Inherent limitations of hybrid transactional memory

Several hybrid transactional memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort nature of hardware transactional memory with a slow, reliable software backup. However, the costs of providing concurrency between hardware and software transactions in HyTM are sti...

Full description

Bibliographic Details
Main Authors: Alistarh, Dan (Author), Kuznetsov, Petr (Author), Ravi, Srivatsan (Author), Kopinsky, Justin (Contributor), Shavit, Nir N. (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Springer Berlin Heidelberg, 2018-07-06T17:35:33Z.
Subjects:
Online Access:Get fulltext
LEADER 02247 am a22002413u 4500
001 116831
042 |a dc 
100 1 0 |a Alistarh, Dan  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Kopinsky, Justin  |e contributor 
100 1 0 |a Shavit, Nir N.  |e contributor 
700 1 0 |a Kuznetsov, Petr  |e author 
700 1 0 |a Ravi, Srivatsan  |e author 
700 1 0 |a Kopinsky, Justin  |e author 
700 1 0 |a Shavit, Nir N.  |e author 
245 0 0 |a Inherent limitations of hybrid transactional memory 
260 |b Springer Berlin Heidelberg,   |c 2018-07-06T17:35:33Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/116831 
520 |a Several hybrid transactional memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort nature of hardware transactional memory with a slow, reliable software backup. However, the costs of providing concurrency between hardware and software transactions in HyTM are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses. The model allows us to formally quantify and analyze the amount of overhead (instrumentation) caused by the potential presence of software transactions. We prove that (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for very weak progress guarantees, and (2) the instrumentation cost incurred by a hardware transaction in any progressive opaque HyTM is linear in the size of the transaction's data set. We further describe two implementations which exhibit optimal instrumentation costs for two different progress conditions. In sum, this paper proposes the first formal HyTM model and captures for the first time the trade-off between the degree of hardware-software TM concurrency and the amount of instrumentation overhead. Keywords: hardware transactional memory, Instrumentation, Lower bounds 
546 |a en 
655 7 |a Article 
773 |t Distributed Computing