Coupling coefficients of su q (1,1) and multivariate q -Racah polynomials

Gasper & Rahman's multivariate q -Racah polynomials are shown to arise as connection coefficients between families of multivariate q -Hahn or q -Jacobi polynomials. The families of q -Hahn polynomials are constructed as nested Clebsch-Gordan coefficients for the positive-discrete series rep...

Full description

Bibliographic Details
Main Authors: Vinet, Luc (Author), Iliev, Plamen (Author), Genest, Vincent (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier, 2018-07-02T14:29:32Z.
Subjects:
Online Access:Get fulltext
LEADER 01302 am a22002053u 4500
001 116710
042 |a dc 
100 1 0 |a Vinet, Luc  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Genest, Vincent  |e contributor 
700 1 0 |a Iliev, Plamen  |e author 
700 1 0 |a Genest, Vincent  |e author 
245 0 0 |a Coupling coefficients of su q (1,1) and multivariate q -Racah polynomials 
260 |b Elsevier,   |c 2018-07-02T14:29:32Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/116710 
520 |a Gasper & Rahman's multivariate q -Racah polynomials are shown to arise as connection coefficients between families of multivariate q -Hahn or q -Jacobi polynomials. The families of q -Hahn polynomials are constructed as nested Clebsch-Gordan coefficients for the positive-discrete series representations of the quantum algebra suq(1,1) . This gives an interpretation of the multivariate q -Racah polynomials in terms of 3nj symbols. It is shown that the families of q -Hahn polynomials also arise in wavefunctions of q -deformed quantum Calogero-Gaudin superintegrable systems. 
520 |a Simons Foundation (Grant #280940) 
520 |a Natural Sciences and Engineering Research Council of Canada 
655 7 |a Article 
773 |t Nuclear Physics B