An incremental sampling-based algorithm for stochastic optimal control

In this paper, we consider a class of continuous-time, continuous-space stochastic optimal control problems. Using the Markov chain approximation method and recent advances in sampling-based algorithms for deterministic path planning, we propose a novel algorithm called the incremental Markov Decisi...

Full description

Bibliographic Details
Main Authors: Huynh, Vu Anh (Contributor), Karaman, Sertac (Contributor), Frazzoli, Emilio (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics (Contributor), Massachusetts Institute of Technology. Laboratory for Information and Decision Systems (Contributor)
Format: Article
Language:English
Published: SAGE Publications, 2018-06-12T17:35:16Z.
Subjects:
Online Access:Get fulltext
LEADER 02459 am a22002413u 4500
001 116272
042 |a dc 
100 1 0 |a Huynh, Vu Anh  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Aeronautics and Astronautics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Information and Decision Systems  |e contributor 
100 1 0 |a Huynh, Vu Anh  |e contributor 
100 1 0 |a Karaman, Sertac  |e contributor 
100 1 0 |a Frazzoli, Emilio  |e contributor 
700 1 0 |a Karaman, Sertac  |e author 
700 1 0 |a Frazzoli, Emilio  |e author 
245 0 0 |a An incremental sampling-based algorithm for stochastic optimal control 
260 |b SAGE Publications,   |c 2018-06-12T17:35:16Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/116272 
520 |a In this paper, we consider a class of continuous-time, continuous-space stochastic optimal control problems. Using the Markov chain approximation method and recent advances in sampling-based algorithms for deterministic path planning, we propose a novel algorithm called the incremental Markov Decision Process to incrementally compute control policies that approximate arbitrarily well an optimal policy in terms of the expected cost. The main idea behind the algorithm is to generate a sequence of finite discretizations of the original problem through random sampling of the state space. At each iteration, the discretized problem is a Markov Decision Process that serves as an incrementally refined model of the original problem. We show that with probability one, (i) the sequence of the optimal value functions for each of the discretized problems converges uniformly to the optimal value function of the original stochastic optimal control problem, and (ii) the original optimal value function can be computed efficiently in an incremental manner using asynchronous value iterations. Thus, the proposed algorithm provides an anytime approach to the computation of optimal control policies of the continuous problem. The effectiveness of the proposed approach is demonstrated on motion planning and control problems in cluttered environments in the presence of process noise. Keywords: Stochastic optimal control, dynamical systems, randomized methods, robotics 
520 |a National Science Foundation (U.S.) (Grant CNS-1016213) 
520 |a Arthur & Linda Gelb Tr Charitable Foundation 
655 7 |a Article 
773 |t The International Journal of Robotics Research