Predictive Modeling of Anatomy with Genetic and Clinical Data

We present a semi-parametric generative model for predicting anatomy of a patient in subsequent scans following a single baseline image. Such predictive modeling promises to facilitate novel analyses in both voxel-level studies and longitudinal biomarker evaluation. We capture anatomical change thro...

Full description

Bibliographic Details
Main Authors: Dalca, Adrian Vasile (Contributor), Sridharan, Ramesh (Contributor), Sabuncu, Mert R (Contributor), Golland, Polina (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Springer, 2018-06-06T15:21:45Z.
Subjects:
Online Access:Get fulltext
LEADER 02258 am a22003133u 4500
001 116142
042 |a dc 
100 1 0 |a Dalca, Adrian Vasile  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Dalca, Adrian Vasile  |e contributor 
100 1 0 |a Sridharan, Ramesh  |e contributor 
100 1 0 |a Sabuncu, Mert R  |e contributor 
100 1 0 |a Golland, Polina  |e contributor 
700 1 0 |a Sridharan, Ramesh  |e author 
700 1 0 |a Sabuncu, Mert R  |e author 
700 1 0 |a Golland, Polina  |e author 
245 0 0 |a Predictive Modeling of Anatomy with Genetic and Clinical Data 
260 |b Springer,   |c 2018-06-06T15:21:45Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/116142 
520 |a We present a semi-parametric generative model for predicting anatomy of a patient in subsequent scans following a single baseline image. Such predictive modeling promises to facilitate novel analyses in both voxel-level studies and longitudinal biomarker evaluation. We capture anatomical change through a combination of population-wide regression and a non-parametric model of the subject's health based on individual genetic and clinical indicators. In contrast to classical correlation and longitudinal analysis, we focus on predicting new observations from a single subject observation. We demonstrate prediction of follow-up anatomical scans in the ADNI cohort, and illustrate a novel analysis approach that compares a patient's scans to the predicted subject-specific healthy anatomical trajectory. Keywords: Population Trend, Baseline Image, Kernel Machine, Good Linear Unbiased Predictor, Segmentation Label 
520 |a National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant 1K25EB013649-01) 
520 |a BrightFocus Foundation (AHAF-A2012333) 
520 |a Neuroimaging Analysis Center (U.S.) (P41EB015902) 
520 |a National Institutes of Health (U.S.) (DA022759) 
520 |a Wistron Corporation 
546 |a en_US 
655 7 |a Article 
773 |t Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015