A COMPUTABLE FUNCTOR FROM GRAPHS TO FIELDS

Fried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure S, there e...

Full description

Bibliographic Details
Main Authors: SHLAPENTOKH, ALEXANDRA (Author), Miller, Russell (Author), Schoutens, Hans (Author), Schoustens, Hans (Author), Shlapentokh, Alexandra (Author), Poonen, Bjorn (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Cambridge University Press (CUP), 2018-06-04T15:04:36Z.
Subjects:
Online Access:Get fulltext
LEADER 01449 am a22002293u 4500
001 116051
042 |a dc 
100 1 0 |a SHLAPENTOKH, ALEXANDRA  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Poonen, Bjorn  |e contributor 
700 1 0 |a Miller, Russell  |e author 
700 1 0 |a Schoutens, Hans  |e author 
700 1 0 |a Schoustens, Hans  |e author 
700 1 0 |a Shlapentokh, Alexandra  |e author 
700 1 0 |a Poonen, Bjorn  |e author 
245 0 0 |a A COMPUTABLE FUNCTOR FROM GRAPHS TO FIELDS 
260 |b Cambridge University Press (CUP),   |c 2018-06-04T15:04:36Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/116051 
520 |a Fried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure S, there exists a countable field F of arbitrary characteristic with the same essential computable-model-theoretic properties as. Along the way, we develop a new computable category theory, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors. 
520 |a National Science Foundation (U.S.) (Grant DMS-1069236) 
655 7 |a Article 
773 |t The Journal of Symbolic Logic