Noncommutative motives of separable algebras

In this article we study in detail the category of noncommutative motives of separable algebras Sep(k) over a base field k. We start by constructing four different models of the full subcategory of commutative separable algebras CSep(k). Making use of these models, we then explain how the category S...

Full description

Bibliographic Details
Main Authors: Van den Bergh, Michel (Author), Trigo Neri Tabuada, Goncalo Jorge (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier BV, 2018-06-01T15:34:29Z.
Subjects:
Online Access:Get fulltext
LEADER 01905 am a22001693u 4500
001 116038
042 |a dc 
100 1 0 |a Van den Bergh, Michel  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Trigo Neri Tabuada, Goncalo Jorge  |e contributor 
700 1 0 |a Trigo Neri Tabuada, Goncalo Jorge  |e author 
245 0 0 |a Noncommutative motives of separable algebras 
260 |b Elsevier BV,   |c 2018-06-01T15:34:29Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/116038 
520 |a In this article we study in detail the category of noncommutative motives of separable algebras Sep(k) over a base field k. We start by constructing four different models of the full subcategory of commutative separable algebras CSep(k). Making use of these models, we then explain how the category Sep(k) can be described as a "fibered Z-order" over CSep(k). This viewpoint leads to several computations and structural properties of the category Sep(k). For example, we obtain a complete dictionary between directs sums of noncommutative motives of central simple algebras (= CSA) and sequences of elements in the Brauer group of k. As a first application, we establish two families of motivic relations between CSA which hold for every additive invariant (e.g. algebraic K-theory, cyclic homology, and topological Horhschild homology). As a second application, we compute the additive invariants of twisted flag varieties using solely the Brauer classes of the corresponding CSA. Along the way, we categorify the cyclic sieving phenomenon and compute the (rational) noncommutative motives of purely inseparable field extensions and of dg Azumaya algebras. Keywords: Noncommutative motives; Separable algebra; Brauer group; Twisted flag variety; Hecke algebra; Convolution; Cyclic sieving phenomenon;dg Azumaya algebra 
655 7 |a Article 
773 |t Advances in Mathematics