Gromov-Witten/Pairs correspondence for the quintic 3-fold

We use the Gromov-Witten/Pairs (GW/P) descendent correspondence for toric 3-folds and degeneration arguments to establish the GW/P correspondence for several compact Calabi-Yau (CY) 3-folds (including all CY complete intersections in products of projective spaces). A crucial aspect of the proof is t...

Full description

Bibliographic Details
Main Authors: Pandharipande, R. (Author), Pixton, Aaron C (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: American Mathematical Society (AMS), 2018-05-30T17:23:05Z.
Subjects:
Online Access:Get fulltext
LEADER 01355 am a22001693u 4500
001 115975
042 |a dc 
100 1 0 |a Pandharipande, R.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Pixton, Aaron C  |e contributor 
700 1 0 |a Pixton, Aaron C  |e author 
245 0 0 |a Gromov-Witten/Pairs correspondence for the quintic 3-fold 
260 |b American Mathematical Society (AMS),   |c 2018-05-30T17:23:05Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/115975 
520 |a We use the Gromov-Witten/Pairs (GW/P) descendent correspondence for toric 3-folds and degeneration arguments to establish the GW/P correspondence for several compact Calabi-Yau (CY) 3-folds (including all CY complete intersections in products of projective spaces). A crucial aspect of the proof is the study of the GW/P correspondence for descendents in relative geometries. Projective bundles over surfaces relative to a section play a special role. The GW/P correspondence for Calabi-Yau complete intersections provides a structure result for the Gromov-Witten invariants in a fixed curve class. After a change of variables, the Gromov-Witten series is a rational function in the variable -q=e[superscript iu] invariant under q ↔ q[subscript -1]. 
655 7 |a Article 
773 |t Journal of the American Mathematical Society