Non-Unipotent Representations and Categorical Centers

Let G be a connected reductive group defined over a finite field F[subscript q]. We give a parametrization of the irreducible representations of G(Fq) in terms of (twisted) categorical centres of various monoidal categories associated to G. Results of this type were known earlier for unipotent repre...

Full description

Bibliographic Details
Main Author: Lusztig, George (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Institute of Mathematics, Academia Sinica, 2018-05-29T18:43:25Z.
Subjects:
Online Access:Get fulltext
LEADER 01095 am a22001813u 4500
001 115947
042 |a dc 
100 1 0 |a Lusztig, George  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Lusztig, George  |e contributor 
245 0 0 |a Non-Unipotent Representations and Categorical Centers 
260 |b Institute of Mathematics, Academia Sinica,   |c 2018-05-29T18:43:25Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/115947 
520 |a Let G be a connected reductive group defined over a finite field F[subscript q]. We give a parametrization of the irreducible representations of G(Fq) in terms of (twisted) categorical centres of various monoidal categories associated to G. Results of this type were known earlier for unipotent representations and also for character sheaves 
520 |a National Science Foundation (U.S.) (grant DMS-1566618) 
690 |a Reductive group, flag manifold, irred ucible representation, categorical centre 
655 7 |a Article 
773 |t Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES