Nonsplit Hecke algebras and perverse sheaves

Let H be a Hecke algebra arising as an endomorphism algebra of the representation of a Chevalley group G over induced by a unipotent cuspidal representation of a Levi quotient L of a parabolic subgroup. We assume that L is not a torus. In this paper we outline a geometric interpretation of the coeff...

Full description

Bibliographic Details
Main Author: Lusztig, George (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2018-05-24T19:37:59Z.
Subjects:
Online Access:Get fulltext
LEADER 01041 am a22001573u 4500
001 115875
042 |a dc 
100 1 0 |a Lusztig, George  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Lusztig, George  |e contributor 
245 0 0 |a Nonsplit Hecke algebras and perverse sheaves 
260 |b Springer-Verlag,   |c 2018-05-24T19:37:59Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/115875 
520 |a Let H be a Hecke algebra arising as an endomorphism algebra of the representation of a Chevalley group G over induced by a unipotent cuspidal representation of a Levi quotient L of a parabolic subgroup. We assume that L is not a torus. In this paper we outline a geometric interpretation of the coefficients of the canonical basis of H in terms of perverse sheaves. We illustrate this in detail in the case where the Weyl group of G is ot type and that of L is of type. Keywords: Hecke algebra; Parabolic character sheaf; Canonical basis 
655 7 |a Article 
773 |t Selecta Mathematica