Profiles for the Radial Focusing 4d Energy-Critical Wave Equation

Consider a finite energy radial solution to the focusing energy critical semilinear wave equation in 1 + 4 dimensions. Assume that this solution exhibits type-II behavior, by which we mean that the critical Sobolev norm of the evolution stays bounded on the maximal interval of existence. We prove th...

Full description

Bibliographic Details
Main Authors: Côte, R. (Author), Kenig, C. E. (Author), Schlag, W. (Author), Lawrie, Andrew W (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2018-05-24T17:48:51Z.
Subjects:
Online Access:Get fulltext
LEADER 01594 am a22002053u 4500
001 115857
042 |a dc 
100 1 0 |a Côte, R.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Lawrie, Andrew W  |e contributor 
700 1 0 |a Kenig, C. E.  |e author 
700 1 0 |a Schlag, W.  |e author 
700 1 0 |a Lawrie, Andrew W  |e author 
245 0 0 |a Profiles for the Radial Focusing 4d Energy-Critical Wave Equation 
260 |b Springer-Verlag,   |c 2018-05-24T17:48:51Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/115857 
520 |a Consider a finite energy radial solution to the focusing energy critical semilinear wave equation in 1 + 4 dimensions. Assume that this solution exhibits type-II behavior, by which we mean that the critical Sobolev norm of the evolution stays bounded on the maximal interval of existence. We prove that along a sequence of times tending to the maximal forward time of existence, the solution decomposes into a sum of dynamically rescaled solitons, a free radiation term, and an error tending to zero in the energy space. If, in addition, we assume that the critical norm of the evolution localized to the light cone (the forward light cone in the case of global solutions and the backwards cone in the case of finite time blow-up) is less than 2 times the critical norm of the ground state solution W, then the decomposition holds without a restriction to a subsequence. 
520 |a National Science Foundation (U.S.) (Grant DMS-1302782) 
655 7 |a Article 
773 |t Communications in Mathematical Physics