Fractional Gaussian fields: A survey

We discuss a family of random fields indexed by a parameter s ∈ R which we call the fractional Gaussian fields, given by FGF[subscript s](R[superscript d]) = (-Δ)[superscript -s/2]W, where W is a white noise on R[superscript d] and (-Δ)[superscript -s/2] is the fractional Laplacian. These fields can...

Full description

Bibliographic Details
Main Authors: Lodhia, Asad Iqbal (Contributor), Sheffield, Scott Roger (Contributor), Sun, Xin (Contributor), Watson, Samuel Stewart (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Institute of Mathematical Statistics, 2018-05-11T17:37:12Z.
Subjects:
Online Access:Get fulltext
LEADER 02397 am a22002533u 4500
001 115331
042 |a dc 
100 1 0 |a Lodhia, Asad Iqbal  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Lodhia, Asad Iqbal  |e contributor 
100 1 0 |a Sheffield, Scott Roger  |e contributor 
100 1 0 |a Sun, Xin  |e contributor 
100 1 0 |a Watson, Samuel Stewart  |e contributor 
700 1 0 |a Sheffield, Scott Roger  |e author 
700 1 0 |a Sun, Xin  |e author 
700 1 0 |a Watson, Samuel Stewart  |e author 
245 0 0 |a Fractional Gaussian fields: A survey 
260 |b Institute of Mathematical Statistics,   |c 2018-05-11T17:37:12Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/115331 
520 |a We discuss a family of random fields indexed by a parameter s ∈ R which we call the fractional Gaussian fields, given by FGF[subscript s](R[superscript d]) = (-Δ)[superscript -s/2]W, where W is a white noise on R[superscript d] and (-Δ)[superscript -s/2] is the fractional Laplacian. These fields can also be parameterized by their Hurst parameter H = s-d/2. In one dimension, examples of FGF[subscript s] processes include Brownian motion (s = 1) and fractional Brownian motion (1/2 < s < 3/2). Examples in arbitrary dimension include white noise (s = 0), the Gaussian free field (s = 1), the bi-Laplacian Gaussian field (s = 2), the log-correlated Gaussian field (s = d/2), Lévy's Brownian motion (s = d/2+1/2), and multidimensional fractional Brownian motion (d/2 < s < d/2+1). These fields have applications to statistical physics, early-universe cosmology, finance, quantum field theory, image processing, and other disciplines. We present an overview of fractional Gaussian fields including covariance formulas, Gibbs properties, spherical coordinate decompositions, restrictions to linear subspaces, local set theorems, and other basic results. We also define a discrete fractional Gaussian field and explain how the FGF[subscript s] with s ∈ (0, 1) can be understood as a long range Gaussian free field in which the potential theory of Brownian motion is replaced by that of an isotropic 2s-stable Lévy process. 
520 |a National Science Foundation (U.S.) (Grant DMS 1209044) 
520 |a National Science Foundation (U.S.). Graduate Research Fellowship Program (Award 1122374) 
655 7 |a Article 
773 |t Probability Surveys