Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict s...

Full description

Bibliographic Details
Main Authors: Lopez-Rios, Hector (Author), Mendoza-Cortes (Author), Fomine, Serguei (Author), Pablo Pedro, Ricardo (Contributor), Kong, Jing (Contributor), Van Voorhis, Troy (Contributor), Dresselhaus, Mildred (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-05-11T15:26:32Z.
Subjects:
Online Access:Get fulltext
LEADER 02032 am a22003013u 4500
001 115321
042 |a dc 
100 1 0 |a Lopez-Rios, Hector  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Pablo Pedro, Ricardo  |e contributor 
100 1 0 |a Kong, Jing  |e contributor 
100 1 0 |a Van Voorhis, Troy  |e contributor 
100 1 0 |a Dresselhaus, Mildred  |e contributor 
700 1 0 |a Mendoza-Cortes  |e author 
700 1 0 |a Fomine, Serguei  |e author 
700 1 0 |a Pablo Pedro, Ricardo  |e author 
700 1 0 |a Kong, Jing  |e author 
700 1 0 |a Van Voorhis, Troy  |e author 
700 1 0 |a Dresselhaus, Mildred  |e author 
245 0 0 |a Exploring Low Internal Reorganization Energies for Silicene Nanoclusters 
260 |b American Physical Society,   |c 2018-05-11T15:26:32Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/115321 
520 |a This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n-type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n-type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies. 
546 |a en 
655 7 |a Article 
773 |t Physical Review Applied