Simultaneous single-step one-shot optimization with unsteady PDEs

The single-step one-shot method has proven to be very efficient for PDE-constrained optimization where the partial differential equation (PDE) is solved by an iterative fixed point solver. In this approach, the simulation and optimization tasks are performed simultaneously in a single iteration. If...

Full description

Bibliographic Details
Main Authors: Günther, Stefanie (Author), Gauger, Nicolas R. (Author), Wang, Qiqi (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics (Contributor)
Format: Article
Language:English
Published: Elsevier, 2018-04-20T20:43:56Z.
Subjects:
Online Access:Get fulltext
Description
Summary:The single-step one-shot method has proven to be very efficient for PDE-constrained optimization where the partial differential equation (PDE) is solved by an iterative fixed point solver. In this approach, the simulation and optimization tasks are performed simultaneously in a single iteration. If the PDE is unsteady, finding an appropriate fixed point iteration is non-trivial. In this paper, we provide a framework that makes the single-step one-shot method applicable for unsteady PDEs that are solved by classical time-marching schemes. The one-shot method is applied to an optimal control problem with unsteady incompressible Navier-Stokes equations that are solved by an industry standard simulation code. With the Van-der-Pol oscillator as a generic model problem, the modified simulation scheme is further improved using adaptive time scales. Finally, numerical results for the advection-diffusion equation are presented. Keywords: Simultaneous optimization; One-shot method; PDE-constrained optimization; Unsteady PDE; Adaptive time scale