Record Atmospheric Fresh Water Capture and Heat Transfer with a Material Operating at the Water Uptake Reversibility Limit

The capture of water vapor at low relative humidity is desirable for producing potable water in desert regions and for heat transfer and storage. Here, we report a mesoporous metal-organic framework that captures 82% water by weight below 30% relative humidity. Under simulated desert conditions, the...

Full description

Bibliographic Details
Main Authors: Rieth, Adam Joseph (Contributor), Yang, Sungwoo (Contributor), Wang, Evelyn (Contributor), Dinca, Mircea (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: American Chemical Society, 2018-04-13T14:05:52Z.
Subjects:
Online Access:Get fulltext
LEADER 02228 am a22003253u 4500
001 114690
042 |a dc 
100 1 0 |a Rieth, Adam Joseph  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Dinca, Mircea  |e contributor 
100 1 0 |a Rieth, Adam Joseph  |e contributor 
100 1 0 |a Yang, Sungwoo  |e contributor 
100 1 0 |a Wang, Evelyn  |e contributor 
100 1 0 |a Dinca, Mircea  |e contributor 
700 1 0 |a Yang, Sungwoo  |e author 
700 1 0 |a Wang, Evelyn  |e author 
700 1 0 |a Dinca, Mircea  |e author 
245 0 0 |a Record Atmospheric Fresh Water Capture and Heat Transfer with a Material Operating at the Water Uptake Reversibility Limit 
260 |b American Chemical Society,   |c 2018-04-13T14:05:52Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/114690 
520 |a The capture of water vapor at low relative humidity is desirable for producing potable water in desert regions and for heat transfer and storage. Here, we report a mesoporous metal-organic framework that captures 82% water by weight below 30% relative humidity. Under simulated desert conditions, the sorbent would deliver 0.82 g[subscript H2O]g[subscript MOF[superscript -1]], nearly double the quantity of fresh water compared to the previous best material. The material further demonstrates a cooling capacity of 400 kWh m[subscript -3] per cycle, also a record value for a sorbent capable of creating a 20 °C difference between ambient and output temperature. The water uptake in this sorbent is optimized: the pore diameter of our material is above the critical diameter for water capillary action, enabling water uptake at the limit of reversibility. 
520 |a Massachusetts Institute of Technology. Tata Center for Technology and Design 
520 |a National Science Foundation (U.S.) (CAREER Award DMR-1452612) 
520 |a Alfred P. Sloan Foundation 
520 |a Research Corporation for Science Advancement (Cottrell Award) 
520 |a United States. Advanced Research Projects Agency-Energy 
546 |a en_US 
655 7 |a Article 
773 |t ACS Central Science