Linked cluster expansions for open quantum systems on a lattice

We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models, directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired extensive property onto small connected clusters of a given size and topology....

Full description

Bibliographic Details
Main Authors: Biella, Alberto (Author), Jin, Jiasen (Author), Ciuti, Cristiano (Author), Fazio, Rosario (Author), Rossini, Davide (Author), Viyuela Garcia, Oscar (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2018-03-27T17:03:58Z.
Subjects:
Online Access:Get fulltext
LEADER 01595 am a22002293u 4500
001 114399
042 |a dc 
100 1 0 |a Biella, Alberto  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Viyuela Garcia, Oscar  |e contributor 
700 1 0 |a Jin, Jiasen  |e author 
700 1 0 |a Ciuti, Cristiano  |e author 
700 1 0 |a Fazio, Rosario  |e author 
700 1 0 |a Rossini, Davide  |e author 
700 1 0 |a Viyuela Garcia, Oscar  |e author 
245 0 0 |a Linked cluster expansions for open quantum systems on a lattice 
260 |b American Physical Society,   |c 2018-03-27T17:03:58Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/114399 
520 |a We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models, directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired extensive property onto small connected clusters of a given size and topology. We first test this approach on the isotropic spin-1/2 Hamiltonian in two dimensions, where each spin is coupled to an independent environment that induces incoherent spin flips. Then we apply it to the study of an anisotropic model displaying a dissipative phase transition from a magnetically ordered to a disordered phase. By means of a Padé analysis on the series expansions for the average magnetization, we provide a viable route to locate the phase transition and to extrapolate the critical exponent for the magnetic susceptibility. 
546 |a en 
655 7 |a Article 
773 |t Physical Review B