Efficient Control Discretization Based on Turnpike Theory for Dynamic Optimization

Dynamic optimization offers a great potential for maximizing performance of continuous processes from startup to shutdown by obtaining optimal trajectories for the control variables. However, numerical procedures for dynamic optimization can become prohibitively costly upon a sufficiently fine discr...

Full description

Bibliographic Details
Main Authors: Sahlodin, Ali Mohammad (Contributor), Barton, Paul I (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Process Systems Engineering Laboratory (Contributor)
Format: Article
Language:English
Published: MDPI AG, 2018-03-19T13:51:18Z.
Subjects:
Online Access:Get fulltext
LEADER 02203 am a22002053u 4500
001 114180
042 |a dc 
100 1 0 |a Sahlodin, Ali Mohammad  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Process Systems Engineering Laboratory  |e contributor 
100 1 0 |a Sahlodin, Ali Mohammad  |e contributor 
100 1 0 |a Barton, Paul I  |e contributor 
700 1 0 |a Barton, Paul I  |e author 
245 0 0 |a Efficient Control Discretization Based on Turnpike Theory for Dynamic Optimization 
260 |b MDPI AG,   |c 2018-03-19T13:51:18Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/114180 
520 |a Dynamic optimization offers a great potential for maximizing performance of continuous processes from startup to shutdown by obtaining optimal trajectories for the control variables. However, numerical procedures for dynamic optimization can become prohibitively costly upon a sufficiently fine discretization of control trajectories, especially for large-scale dynamic process models. On the other hand, a coarse discretization of control trajectories is often incapable of representing the optimal solution, thereby leading to reduced performance. In this paper, a new control discretization approach for dynamic optimization of continuous processes is proposed. It builds upon turnpike theory in optimal control and exploits the solution structure for constructing the optimal trajectories and adaptively deciding the locations of the control discretization points. As a result, the proposed approach can potentially yield the same, or even improved, optimal solution with a coarser discretization than a conventional uniform discretization approach. It is shown via case studies that using the proposed approach can reduce the cost of dynamic optimization significantly, mainly due to introducing fewer optimization variables and cheaper sensitivity calculations during integration. Keywords: dynamic optimization; turnpike theory; control parametrization; adaptive discretization; optimal control 
520 |a Novartis-MIT Center for Continuous Manufacturing 
655 7 |a Article 
773 |t Processes