Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO₃

The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO₃ (STO), an important su...

Full description

Bibliographic Details
Main Authors: Rosenberg, Aaron J. (Author), Kirtley, John R. (Author), Moler, Kathryn A. (Author), Katmis, Ferhat (Contributor), Gedik, Nuh (Contributor), Moodera, Jagadeesh (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2017-12-29T16:00:47Z.
Subjects:
Online Access:Get fulltext
LEADER 02292 am a22002893u 4500
001 112968
042 |a dc 
100 1 0 |a Rosenberg, Aaron J.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Katmis, Ferhat  |e contributor 
100 1 0 |a Gedik, Nuh  |e contributor 
100 1 0 |a Moodera, Jagadeesh  |e contributor 
700 1 0 |a Kirtley, John R.  |e author 
700 1 0 |a Moler, Kathryn A.  |e author 
700 1 0 |a Katmis, Ferhat  |e author 
700 1 0 |a Gedik, Nuh  |e author 
700 1 0 |a Moodera, Jagadeesh  |e author 
245 0 0 |a Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO₃ 
260 |b American Physical Society,   |c 2017-12-29T16:00:47Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/112968 
520 |a The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO₃ (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange. 
520 |a National Science Foundation (U.S.) (Grant DMR-1207469) 
520 |a United States. Office of Naval Research (Grant N00014-13-1-0301) 
520 |a United States. Office of Naval Research (Grant N00014-16-1-2657) 
546 |a en 
655 7 |a Article 
773 |t Physical Review Materials