Phenotyping hypotensive patients in critical care using hospital discharge summaries

Among critically-ill patients, hypotension represents a failure in compensatory mechanisms and may lead to organ hypoperfusion and failure. In this work, we adopt a datadriven approach for phenotype discovery and visualization of patient similarity and cohort structure in the intensive care unit (IC...

Full description

Bibliographic Details
Main Authors: Dai, Yang (Contributor), Lokhandwala, Sharukh (Contributor), Long, William J (Contributor), Mark, Roger G (Contributor), Lehman, Li-Wei (Contributor)
Other Authors: Institute for Medical Engineering and Science (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2017-12-19T18:43:15Z.
Subjects:
Online Access:Get fulltext
LEADER 02617 am a22003013u 4500
001 112808
042 |a dc 
100 1 0 |a Dai, Yang  |e author 
100 1 0 |a Institute for Medical Engineering and Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Dai, Yang  |e contributor 
100 1 0 |a Lokhandwala, Sharukh  |e contributor 
100 1 0 |a Long, William J  |e contributor 
100 1 0 |a Mark, Roger G  |e contributor 
100 1 0 |a Lehman, Li-Wei  |e contributor 
700 1 0 |a Lokhandwala, Sharukh  |e author 
700 1 0 |a Long, William J  |e author 
700 1 0 |a Mark, Roger G  |e author 
700 1 0 |a Lehman, Li-Wei  |e author 
245 0 0 |a Phenotyping hypotensive patients in critical care using hospital discharge summaries 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2017-12-19T18:43:15Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/112808 
520 |a Among critically-ill patients, hypotension represents a failure in compensatory mechanisms and may lead to organ hypoperfusion and failure. In this work, we adopt a datadriven approach for phenotype discovery and visualization of patient similarity and cohort structure in the intensive care unit (ICU). We used Hierarchical Dirichlet Process (HDP) as a non-parametric topic modeling technique to automatically learn a d-dimensional feature representation of patients that captures the latent 'topic' structure of diseases, symptoms, medications, and findings documented in hospital discharge summaries. We then used the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm to convert the d-dimensional latent structure learned from HDP into a matrix of pairwise similarities for visualizing patient similarity and cohort structure. Using discharge summaries of a large patient cohort from the MIMIC II database, we evaluated the clinical utility of the discovered topic structure in phenotyping critically-ill patients who experienced hypotensive episodes. Our results indicate that the approach is able to reveal clinically interpretable clustering structure within our cohort and may potentially provide valuable insights to better understand the association between disease phenotypes and outcomes. 
520 |a National Institutes of Health (U.S.) (Grant R01-EB017205) 
520 |a National Institutes of Health (U.S.) (Grant R01-EB001659) 
520 |a National Institutes of Health (U.S.) (Grant R01GM104987) 
655 7 |a Article 
773 |t 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)