Tuning of Collagen Scaffold Properties Modulates Embedded Endothelial Cell Regulatory Phenotype in Repair of Vascular Injuries In Vivo

Perivascularly implanted matrix embedded endothelial cells (MEECs) are potent regulators of inflammation and intimal hyperplasia following vascular injuries. Endothelial cells (ECs) in collagen scaffolds adopt a reparative phenotype with significant therapeutic potential. Although the biology of MEE...

Full description

Bibliographic Details
Main Authors: Stanley, James R. L. (Author), Unterman, Shimon A. (Contributor), Freiman, Alina (Contributor), Beckerman, Margarita (Contributor), Abraham, Eytan (Contributor), Levy, Ela (Contributor), Edelman, Elazer R (Contributor), Artzi, Natalie (Contributor)
Other Authors: Institute for Medical Engineering and Science (Contributor)
Format: Article
Language:English
Published: Wiley Blackwell, 2017-12-18T15:06:59Z.
Subjects:
Online Access:Get fulltext
LEADER 02698 am a22003253u 4500
001 112779
042 |a dc 
100 1 0 |a Stanley, James R. L.  |e author 
100 1 0 |a Institute for Medical Engineering and Science  |e contributor 
100 1 0 |a Unterman, Shimon A.  |e contributor 
100 1 0 |a Freiman, Alina  |e contributor 
100 1 0 |a Beckerman, Margarita  |e contributor 
100 1 0 |a Abraham, Eytan  |e contributor 
100 1 0 |a Levy, Ela  |e contributor 
100 1 0 |a Edelman, Elazer R  |e contributor 
100 1 0 |a Artzi, Natalie  |e contributor 
700 1 0 |a Unterman, Shimon A.  |e author 
700 1 0 |a Freiman, Alina  |e author 
700 1 0 |a Beckerman, Margarita  |e author 
700 1 0 |a Abraham, Eytan  |e author 
700 1 0 |a Levy, Ela  |e author 
700 1 0 |a Edelman, Elazer R  |e author 
700 1 0 |a Artzi, Natalie  |e author 
245 0 0 |a Tuning of Collagen Scaffold Properties Modulates Embedded Endothelial Cell Regulatory Phenotype in Repair of Vascular Injuries In Vivo 
260 |b Wiley Blackwell,   |c 2017-12-18T15:06:59Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/112779 
520 |a Perivascularly implanted matrix embedded endothelial cells (MEECs) are potent regulators of inflammation and intimal hyperplasia following vascular injuries. Endothelial cells (ECs) in collagen scaffolds adopt a reparative phenotype with significant therapeutic potential. Although the biology of MEECs is increasingly understood, tuning of scaffold properties to control cell-substrate interactions is less well-studied. It is hypothesized that modulating scaffold degradation would change EC phenotype. Scaffolds with differential degradation are prepared by cross-linking and predegradation. Vascular injury increases degradation and the presence of MEECs retards injury-mediated degradation. MEECs respond to differential scaffold properties with altered viability in vivo, suppressed smooth muscle cell (SMC) proliferation in vitro, and altered interleukin-6 and matrix metalloproteinase-9 expression. When implanted perivascularly to a murine carotid wire injury, tuned scaffolds change MEEC effects on vascular repair and inflammation. Live animal imaging enables real-time tracking of cell viability, inflammation, and scaffold degradation, affording an unprecedented understanding of interactions between cells, substrate, and tissue. MEEC-treated injuries improve endothelialization and reduce SMC hyperplasia over 14 d. These data demonstrate the potent role material design plays in tuning MEEC efficacy in vivo, with implications for the design of clinical therapies. 
520 |a National Institutes of Health (U.S.) (Grant R01 GM 49039) 
655 7 |a Article 
773 |t Advanced Healthcare Materials