Dynamic chemical expansion of thin-film non-stoichiometric oxides at extreme temperatures

Actuator operation in increasingly extreme and remote conditions requires materials that reliably sense and actuate at elevated temperatures, and over a range of gas environments. Design of such materials will rely on high-temperature, high-resolution approaches for characterizing material actuation...

Full description

Bibliographic Details
Main Authors: Smith, James F. (Author), Swallow, Jessica Gabrielle (Contributor), Kim, Jae Jin (Contributor), Maloney, John (Contributor), Chen, Di (Contributor), Bishop, Sean (Contributor), Tuller, Harry L (Contributor), Van Vliet, Krystyn J (Contributor)
Other Authors: MIT Materials Research Laboratory (Contributor), Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Vliet, Krystyn Van J. (Contributor)
Format: Article
Language:English
Published: Springer Nature, 2017-12-07T19:16:40Z.
Subjects:
Online Access:Get fulltext
LEADER 02623 am a22003733u 4500
001 112638
042 |a dc 
100 1 0 |a Smith, James F.  |e author 
100 1 0 |a MIT Materials Research Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Vliet, Krystyn Van J.  |e contributor 
100 1 0 |a Swallow, Jessica Gabrielle  |e contributor 
100 1 0 |a Kim, Jae Jin  |e contributor 
100 1 0 |a Maloney, John  |e contributor 
100 1 0 |a Chen, Di  |e contributor 
100 1 0 |a Bishop, Sean  |e contributor 
100 1 0 |a Tuller, Harry L  |e contributor 
100 1 0 |a Van Vliet, Krystyn J  |e contributor 
700 1 0 |a Swallow, Jessica Gabrielle  |e author 
700 1 0 |a Kim, Jae Jin  |e author 
700 1 0 |a Maloney, John  |e author 
700 1 0 |a Chen, Di  |e author 
700 1 0 |a Bishop, Sean  |e author 
700 1 0 |a Tuller, Harry L  |e author 
700 1 0 |a Van Vliet, Krystyn J  |e author 
245 0 0 |a Dynamic chemical expansion of thin-film non-stoichiometric oxides at extreme temperatures 
260 |b Springer Nature,   |c 2017-12-07T19:16:40Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/112638 
520 |a Actuator operation in increasingly extreme and remote conditions requires materials that reliably sense and actuate at elevated temperatures, and over a range of gas environments. Design of such materials will rely on high-temperature, high-resolution approaches for characterizing material actuation in situ. Here, we demonstrate a novel type of high-temperature, low-voltage electromechanical oxide actuator based on the model material Pr[subscript x]Ce[subscript 1−x]O[subscript 2−δ] (PCO). Chemical strain and interfacial stress resulted from electrochemically pumping oxygen into or out of PCO films, leading to measurable film volume changes due to chemical expansion. At 650 °C, nanometre-scale displacement and strain of >0.1% were achieved with electrical bias values <0.1 V, low compared to piezoelectrically driven actuators, with strain amplified fivefold by stress-induced structural deflection. This operando measurement of films 'breathing' at second-scale temporal resolution also enabled detailed identification of the controlling kinetics of this response, and can be extended to other electrochemomechanically coupled oxide films at extreme temperatures. 
520 |a United States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0002633) 
520 |a United States. Department of Energy (Grant DE-AC05-06OR23100) 
546 |a en_US 
655 7 |a Article 
773 |t Nature Materials