Prediction of postoperative outcomes using intraoperative hemodynamic monitoring data

Major surgeries can result in high rates of adverse postoperative events. Reliable prediction of which patient might be at risk for such events may help guide peri- and postoperative care. We show how archiving and mining of intraoperative hemodynamic data in orthotopic liver transplantation (OLT) c...

Full description

Bibliographic Details
Main Authors: Prasad, Varesh (Contributor), Guerrisi, Maria (Author), Dauri, Mario (Author), Coniglione, Filadelfo (Author), Tisone, Giuseppe (Author), De Carolis, Elisa (Author), Cillis, Annagrazia (Author), Canichella, Antonio (Author), Toschi, Nicola (Author), Heldt, Thomas (Contributor)
Other Authors: Massachusetts Institute of Technology. Institute for Medical Engineering & Science (Contributor), Harvard University- (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2017-12-01T13:51:48Z.
Subjects:
Online Access:Get fulltext
LEADER 02784 am a22003253u 4500
001 112328
042 |a dc 
100 1 0 |a Prasad, Varesh  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Medical Engineering & Science  |e contributor 
100 1 0 |a Harvard University-  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Heldt, Thomas  |e contributor 
100 1 0 |a Prasad, Varesh  |e contributor 
100 1 0 |a Heldt, Thomas  |e contributor 
700 1 0 |a Guerrisi, Maria  |e author 
700 1 0 |a Dauri, Mario  |e author 
700 1 0 |a Coniglione, Filadelfo  |e author 
700 1 0 |a Tisone, Giuseppe  |e author 
700 1 0 |a De Carolis, Elisa  |e author 
700 1 0 |a Cillis, Annagrazia  |e author 
700 1 0 |a Canichella, Antonio  |e author 
700 1 0 |a Toschi, Nicola  |e author 
700 1 0 |a Heldt, Thomas  |e author 
245 0 0 |a Prediction of postoperative outcomes using intraoperative hemodynamic monitoring data 
260 |b Nature Publishing Group,   |c 2017-12-01T13:51:48Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/112328 
520 |a Major surgeries can result in high rates of adverse postoperative events. Reliable prediction of which patient might be at risk for such events may help guide peri- and postoperative care. We show how archiving and mining of intraoperative hemodynamic data in orthotopic liver transplantation (OLT) can aid in the prediction of postoperative 180-day mortality and acute renal failure (ARF), improving upon predictions that rely on preoperative information only. From 101 patient records, we extracted 15 preoperative features from clinical records and 41 features from intraoperative hemodynamic signals. We used logistic regression with leave-one-out cross-validation to predict outcomes, and incorporated methods to limit potential model instabilities from feature multicollinearity. Using only preoperative features, mortality prediction achieved an area under the receiver operating characteristic curve (AUC) of 0.53 (95% CI: 0.44-0.78). By using intraoperative features, performance improved significantly to 0.82 (95% CI: 0.56-0.91, P = 0.001). Similarly, including intraoperative features (AUC = 0.82; 95% CI: 0.66-0.94) in ARF prediction improved performance over preoperative features (AUC = 0.72; 95% CI: 0.50-0.85), though not significantly (P = 0.32). We conclude that inclusion of intraoperative hemodynamic features significantly improves prediction of postoperative events in OLT. Features strongly associated with occurrence of both outcomes included greater intraoperative central venous pressure and greater transfusion volumes. 
546 |a en_US 
655 7 |a Article 
773 |t Scientific Reports