Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multip...

Full description

Bibliographic Details
Main Authors: Mozhdehi, Davoud (Author), Cheng, Jing (Author), Barrett, Devin G. (Author), Guan, Zhibin (Author), Messersmith, Phillip B. (Author), Grindy, Scott Charles (Contributor), Learsch, Robert W. (Contributor), Holten-Andersen, Niels (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor)
Format: Article
Language:English
Published: Springer Nature, 2017-10-13T19:44:24Z.
Subjects:
Online Access:Get fulltext
LEADER 02180 am a22002893u 4500
001 111845
042 |a dc 
100 1 0 |a Mozhdehi, Davoud  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Grindy, Scott Charles  |e contributor 
100 1 0 |a Learsch, Robert W.  |e contributor 
100 1 0 |a Holten-Andersen, Niels  |e contributor 
700 1 0 |a Cheng, Jing  |e author 
700 1 0 |a Barrett, Devin G.  |e author 
700 1 0 |a Guan, Zhibin  |e author 
700 1 0 |a Messersmith, Phillip B.  |e author 
700 1 0 |a Grindy, Scott Charles  |e author 
700 1 0 |a Learsch, Robert W.  |e author 
700 1 0 |a Holten-Andersen, Niels  |e author 
245 0 0 |a Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics 
260 |b Springer Nature,   |c 2017-10-13T19:44:24Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/111845 
520 |a In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided. 
520 |a National Science Foundation (U.S.) (Award DMR-0819762) 
520 |a National Science Foundation (U.S.) (Award DMR-1419807) 
655 7 |a Article 
773 |t Nature Materials