A superintegrable discrete harmonic oscillator based on bivariate Charlier polynomials

A simple discrete model of the two-dimensional isotropic harmonic oscillator is presented. It is superintegrable with su(2) as its symmetry algebra. It is constructed with the help of the algebraic properties of the bivariate Charlier polynomials. This adds to the other discrete superintegrable mode...

Full description

Bibliographic Details
Main Authors: Miki, Hiroshi (Author), Vinet, Luc (Author), Yu, Guofu (Author), Genest, Vincent X. (Author), Genest, Vincent (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Pleiades Publishing, 2017-08-28T18:09:22Z.
Subjects:
Online Access:Get fulltext
LEADER 01121 am a22002173u 4500
001 111029
042 |a dc 
100 1 0 |a Miki, Hiroshi  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Genest, Vincent  |e contributor 
700 1 0 |a Vinet, Luc  |e author 
700 1 0 |a Yu, Guofu  |e author 
700 1 0 |a Genest, Vincent X.  |e author 
700 1 0 |a Genest, Vincent  |e author 
245 0 0 |a A superintegrable discrete harmonic oscillator based on bivariate Charlier polynomials 
260 |b Pleiades Publishing,   |c 2017-08-28T18:09:22Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/111029 
520 |a A simple discrete model of the two-dimensional isotropic harmonic oscillator is presented. It is superintegrable with su(2) as its symmetry algebra. It is constructed with the help of the algebraic properties of the bivariate Charlier polynomials. This adds to the other discrete superintegrable models of the oscillator based on Krawtchouk and Meixner orthogonal polynomials in several variables. 
546 |a en 
655 7 |a Article 
773 |t Physics of Atomic Nuclei