Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics

Lithium intercalation into graphite is a critical process in energy storage technology. Studies of Li intercalation kinetics have proved challenging due to structural and phase complexity, and sample heterogeneity. Here we report direct time- and space-resolved, all-optical measurement of Li interca...

Full description

Bibliographic Details
Main Authors: Guo, Yinsheng (Author), Yu, Zhonghua (Author), Efetov, Dmitri K. (Author), Wang, Junpu (Author), Kim, Philip (Author), Brus, Louis E. (Author), Smith, Raymond Barrett (Contributor), Bazant, Martin Z (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Department of Mathematics (Contributor), Bazant, Martin Z. (Contributor)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2017-08-03T14:19:07Z.
Subjects:
Online Access:Get fulltext
LEADER 02376 am a22003013u 4500
001 110917
042 |a dc 
100 1 0 |a Guo, Yinsheng  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Bazant, Martin Z.  |e contributor 
100 1 0 |a Smith, Raymond Barrett  |e contributor 
100 1 0 |a Bazant, Martin Z  |e contributor 
700 1 0 |a Yu, Zhonghua  |e author 
700 1 0 |a Efetov, Dmitri K.  |e author 
700 1 0 |a Wang, Junpu  |e author 
700 1 0 |a Kim, Philip  |e author 
700 1 0 |a Brus, Louis E.  |e author 
700 1 0 |a Smith, Raymond Barrett  |e author 
700 1 0 |a Bazant, Martin Z  |e author 
245 0 0 |a Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics 
260 |b American Chemical Society (ACS),   |c 2017-08-03T14:19:07Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/110917 
520 |a Lithium intercalation into graphite is a critical process in energy storage technology. Studies of Li intercalation kinetics have proved challenging due to structural and phase complexity, and sample heterogeneity. Here we report direct time- and space-resolved, all-optical measurement of Li intercalation. We use a single crystal graphite electrode with lithographically defined disc geometry. All-optical, Raman and reflectance measurements distinguish the intrinsic intercalation process from side reactions, and provide new insight into the microscopic intercalation process. The recently proposed Cahn-Hilliard reaction (CHR) theory quantitatively captures the observed phase front spatial patterns and dynamics, using a two-layer free-energy model with novel, generalized Butler-Volmer kinetics. This approach unites Cahn-Hilliard and electrochemical kinetics, using a thermodynamically consistent description of the Li injection reaction at the crystal edge that involves a cooperative opening of graphene planes. The excellent agreement between experiment and theory presented here, with single-crystal resolution, provides strong support for the CHR theory of solid-state reactions. 
520 |a United States. Dept. of Energy. Office of Basic Energy Sciences (DE-SC0001085) 
546 |a en_US 
655 7 |a Article 
773 |t The Journal of Physical Chemistry Letters