Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current ho...

Full description

Bibliographic Details
Main Authors: Li, Yiyang (Author), El Gabaly, Farid (Author), Bartelt, Norman C. (Author), Sugar, Joshua D. (Author), Fenton, Kyle R. (Author), Cogswell, Daniel A. (Author), Kilcoyne, A. L. David (Author), Tyliszczak, Tolek (Author), Chueh, William C. (Author), Ferguson, Todd Richard (Contributor), Smith, Raymond Barrett (Contributor), Bazant, Martin Z (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Department of Mathematics (Contributor), Bazant, Martin Z. (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2017-08-03T13:59:55Z.
Subjects:
Online Access:Get fulltext
LEADER 02882 am a22003493u 4500
001 110915
042 |a dc 
100 1 0 |a Li, Yiyang  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Bazant, Martin Z.  |e contributor 
100 1 0 |a Ferguson, Todd Richard  |e contributor 
100 1 0 |a Smith, Raymond Barrett  |e contributor 
100 1 0 |a Bazant, Martin Z  |e contributor 
700 1 0 |a El Gabaly, Farid  |e author 
700 1 0 |a Bartelt, Norman C.  |e author 
700 1 0 |a Sugar, Joshua D.  |e author 
700 1 0 |a Fenton, Kyle R.  |e author 
700 1 0 |a Cogswell, Daniel A.  |e author 
700 1 0 |a Kilcoyne, A. L. David  |e author 
700 1 0 |a Tyliszczak, Tolek  |e author 
700 1 0 |a Chueh, William C.  |e author 
700 1 0 |a Ferguson, Todd Richard  |e author 
700 1 0 |a Smith, Raymond Barrett  |e author 
700 1 0 |a Bazant, Martin Z  |e author 
245 0 0 |a Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes 
260 |b Nature Publishing Group,   |c 2017-08-03T13:59:55Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/110915 
520 |a Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode ​lithium iron phosphate (​LiFePO4; ​LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 ​LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in ​LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes. 
546 |a en_US 
655 7 |a Article 
773 |t Nature Materials