Wavelet-based motion artifact removal for electrodermal activity

Electrodermal activity (EDA) recording is a powerful, widely used tool for monitoring psychological or physiological arousal. However, analysis of EDA is hampered by its sensitivity to motion artifacts. We propose a method for removing motion artifacts from EDA, measured as skin conductance (SC), us...

Full description

Bibliographic Details
Main Authors: Chen, Weixuan (Contributor), Jaques, Natasha Mary (Contributor), Taylor, Sara Ann (Contributor), Sano, Akane (Contributor), Fedor, Szymon (Contributor), Picard, Rosalind W. (Contributor)
Other Authors: Massachusetts Institute of Technology. Media Laboratory (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2017-07-12T16:59:36Z.
Subjects:
Online Access:Get fulltext
LEADER 01986 am a22003013u 4500
001 110678
042 |a dc 
100 1 0 |a Chen, Weixuan  |e author 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Chen, Weixuan  |e contributor 
100 1 0 |a Jaques, Natasha Mary  |e contributor 
100 1 0 |a Taylor, Sara Ann  |e contributor 
100 1 0 |a Sano, Akane  |e contributor 
100 1 0 |a Fedor, Szymon  |e contributor 
100 1 0 |a Picard, Rosalind W.  |e contributor 
700 1 0 |a Jaques, Natasha Mary  |e author 
700 1 0 |a Taylor, Sara Ann  |e author 
700 1 0 |a Sano, Akane  |e author 
700 1 0 |a Fedor, Szymon  |e author 
700 1 0 |a Picard, Rosalind W.  |e author 
245 0 0 |a Wavelet-based motion artifact removal for electrodermal activity 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2017-07-12T16:59:36Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/110678 
520 |a Electrodermal activity (EDA) recording is a powerful, widely used tool for monitoring psychological or physiological arousal. However, analysis of EDA is hampered by its sensitivity to motion artifacts. We propose a method for removing motion artifacts from EDA, measured as skin conductance (SC), using a stationary wavelet transform (SWT). We modeled the wavelet coefficients as a Gaussian mixture distribution corresponding to the underlying skin conductance level (SCL) and skin conductance responses (SCRs). The goodness-of-fit of the model was validated on ambulatory SC data. We evaluated the proposed method in comparison with three previous approaches. Our method achieved a greater reduction of artifacts while retaining motion-artifact-free data. 
546 |a en_US 
655 7 |a Article 
773 |t 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)