Leveraging the crowd for annotation of retinal images

Medical data presents a number of challenges. It tends to be unstructured, noisy and protected. To train algorithms to understand medical images, doctors can label the condition associated with a particular image, but obtaining enough labels can be difficult. We propose an annotation approach which...

Full description

Bibliographic Details
Main Authors: Leifman, George (Contributor), Swedish, Tristan (Contributor), Roesch, Karin (Contributor), Raskar, Ramesh (Contributor)
Other Authors: Massachusetts Institute of Technology. Media Laboratory (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2017-07-07T20:35:57Z.
Subjects:
Online Access:Get fulltext
LEADER 01749 am a22002533u 4500
001 110565
042 |a dc 
100 1 0 |a Leifman, George  |e author 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Leifman, George  |e contributor 
100 1 0 |a Swedish, Tristan  |e contributor 
100 1 0 |a Roesch, Karin  |e contributor 
100 1 0 |a Raskar, Ramesh  |e contributor 
700 1 0 |a Swedish, Tristan  |e author 
700 1 0 |a Roesch, Karin  |e author 
700 1 0 |a Raskar, Ramesh  |e author 
245 0 0 |a Leveraging the crowd for annotation of retinal images 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2017-07-07T20:35:57Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/110565 
520 |a Medical data presents a number of challenges. It tends to be unstructured, noisy and protected. To train algorithms to understand medical images, doctors can label the condition associated with a particular image, but obtaining enough labels can be difficult. We propose an annotation approach which starts with a small pool of expertly annotated images and uses their expertise to rate the performance of crowd-sourced annotations. In this paper we demonstrate how to apply our approach for annotation of large-scale datasets of retinal images. We introduce a novel data validation procedure which is designed to cope with noisy ground-truth data and with non-consistent input from both experts and crowd-workers. 
546 |a en_US 
655 7 |a Article 
773 |t 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)