A convex approach to blind deconvolution with diverse inputs

This note considers the problem of blind identification of a linear, time-invariant (LTI) system when the input signals are unknown, but belong to sufficiently diverse, known subspaces. This problem can be recast as the recovery of a rank-1 matrix, and is effectively relaxed using a semidefinite pro...

Full description

Bibliographic Details
Main Authors: Ahmed, Ali (Contributor), Cosse, Augustin M. (Contributor), Demanet, Laurent (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2017-06-26T17:53:44Z.
Subjects:
Online Access:Get fulltext
LEADER 02110 am a22002893u 4500
001 110262
042 |a dc 
100 1 0 |a Ahmed, Ali  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Ahmed, Ali  |e contributor 
100 1 0 |a Cosse, Augustin M.  |e contributor 
100 1 0 |a Demanet, Laurent  |e contributor 
700 1 0 |a Cosse, Augustin M.  |e author 
700 1 0 |a Demanet, Laurent  |e author 
245 0 0 |a A convex approach to blind deconvolution with diverse inputs 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2017-06-26T17:53:44Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/110262 
520 |a This note considers the problem of blind identification of a linear, time-invariant (LTI) system when the input signals are unknown, but belong to sufficiently diverse, known subspaces. This problem can be recast as the recovery of a rank-1 matrix, and is effectively relaxed using a semidefinite program (SDP). We show that exact recovery of both the unknown impulse response, and the unknown inputs, occurs when the following conditions are met: (1) the impulse response function is spread in the Fourier domain, and (2) the N input vectors belong to generic, known subspaces of dimension K in ℝL. Recent results in the well-understood area of low-rank recovery from underdetermined linear measurements can be adapted to show that exact recovery occurs with high probablility (on the genericity of the subspaces) provided that K,L, and N obey the information-theoretic scalings, namely L ≳ K and N ≳ 1 up to log factors. 
520 |a Fonds national de la recherche scientifique (Belgium) 
520 |a MIT International Science and Technology Initiatives 
520 |a United States. Air Force. Office of Scientific Research 
520 |a United States. Office of Naval Research 
520 |a National Science Foundation (U.S.) 
520 |a Total SA 
546 |a en_US 
655 7 |a Article 
773 |t 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)