Reconfigurable and responsive droplet-based compound micro-lenses

Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion d...

Full description

Bibliographic Details
Main Authors: Subramanian, Kaushikaram (Author), Kreysing, Moritz (Author), Nagelberg, Sara Nicole (Contributor), Zarzar, Lauren D. (Contributor), Nicolas, Natalie J. (Contributor), Kalow, Julia Ann (Contributor), Sresht, Vishnu (Contributor), Blankschtein, Edmundo D (Contributor), Barbastathis, George (Contributor), Swager, Timothy M (Contributor), Kolle, Mathias (Contributor)
Other Authors: Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contributor), Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Department of Chemistry (Contributor), Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2017-06-21T20:08:37Z.
Subjects:
Online Access:Get fulltext
LEADER 03178 am a22004933u 4500
001 110155
042 |a dc 
100 1 0 |a Subramanian, Kaushikaram  |e author 
100 1 0 |a Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Nagelberg, Sara Nicole  |e contributor 
100 1 0 |a Zarzar, Lauren D.  |e contributor 
100 1 0 |a Nicolas, Natalie J.  |e contributor 
100 1 0 |a Kalow, Julia Ann  |e contributor 
100 1 0 |a Sresht, Vishnu  |e contributor 
100 1 0 |a Blankschtein, Edmundo D  |e contributor 
100 1 0 |a Barbastathis, George  |e contributor 
100 1 0 |a Swager, Timothy M  |e contributor 
100 1 0 |a Kolle, Mathias  |e contributor 
700 1 0 |a Kreysing, Moritz  |e author 
700 1 0 |a Nagelberg, Sara Nicole  |e author 
700 1 0 |a Zarzar, Lauren D.  |e author 
700 1 0 |a Nicolas, Natalie J.  |e author 
700 1 0 |a Kalow, Julia Ann  |e author 
700 1 0 |a Sresht, Vishnu  |e author 
700 1 0 |a Blankschtein, Edmundo D  |e author 
700 1 0 |a Barbastathis, George  |e author 
700 1 0 |a Swager, Timothy M  |e author 
700 1 0 |a Kolle, Mathias  |e author 
245 0 0 |a Reconfigurable and responsive droplet-based compound micro-lenses 
260 |b Nature Publishing Group,   |c 2017-06-21T20:08:37Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/110155 
520 |a Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. 
520 |a National Science Foundation (U.S.) (DMREF-1533985) 
520 |a Natural Sciences and Engineering Research Council of Canada (Graduate Fellowship) 
520 |a National Science Foundation (U.S.) (Grant DMR-1410718) 
520 |a Max Planck Society for the Advancement of Science 
520 |a Massachusetts Institute of Technology. Department of Mechanical Engineering 
546 |a en_US 
655 7 |a Article 
773 |t Nature Communications