Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights

Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI a...

Full description

Bibliographic Details
Main Authors: Lux, Simon F. (Author), Paschos, Odysseas (Author), Bauer, Christoph (Author), Maglia, Filippo (Author), Lupart, Saskia (Author), Lamp, Peter (Author), Gauthier, Magali Aurelie Marie (Contributor), Carney, Thomas Joseph (Contributor), Grimaud, Alexis (Contributor), Giordano, Livia (Contributor), Pour, Nir (Contributor), Chang, Hao Hsun (Contributor), Fenning, David P (Contributor), Shao-Horn, Yang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2017-06-02T16:19:15Z.
Subjects:
Online Access:Get fulltext
LEADER 03378 am a22005293u 4500
001 109545
042 |a dc 
100 1 0 |a Lux, Simon F.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Materials Science and Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Shao-Horn, Yang  |e contributor 
100 1 0 |a Gauthier, Magali Aurelie Marie  |e contributor 
100 1 0 |a Carney, Thomas Joseph  |e contributor 
100 1 0 |a Grimaud, Alexis  |e contributor 
100 1 0 |a Giordano, Livia  |e contributor 
100 1 0 |a Pour, Nir  |e contributor 
100 1 0 |a Chang, Hao Hsun  |e contributor 
100 1 0 |a Fenning, David P  |e contributor 
100 1 0 |a Shao-Horn, Yang  |e contributor 
700 1 0 |a Paschos, Odysseas  |e author 
700 1 0 |a Bauer, Christoph  |e author 
700 1 0 |a Maglia, Filippo  |e author 
700 1 0 |a Lupart, Saskia  |e author 
700 1 0 |a Lamp, Peter  |e author 
700 1 0 |a Gauthier, Magali Aurelie Marie  |e author 
700 1 0 |a Carney, Thomas Joseph  |e author 
700 1 0 |a Grimaud, Alexis  |e author 
700 1 0 |a Giordano, Livia  |e author 
700 1 0 |a Pour, Nir  |e author 
700 1 0 |a Chang, Hao Hsun  |e author 
700 1 0 |a Fenning, David P  |e author 
700 1 0 |a Shao-Horn, Yang  |e author 
245 0 0 |a Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights 
260 |b American Chemical Society (ACS),   |c 2017-06-02T16:19:15Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/109545 
520 |a Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi[subscript 2-x]MnO[subscript 3]·(1-y)Li[subscript 1-x]MO[subscript 2], which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties. 
520 |a BMW Group 
520 |a MIT/Battelle postdoctoral associate program 
520 |a Taiwan. Ministry of Science and Technology (02-2917-I-564-006-A1) 
520 |a National Defense Science and Engineering Graduate (NDSEG) Fellowship 
520 |a United States. Department of Defense (32 CFR 168a DoD) 
520 |a United States. Air Force. Office of Scientific Research 
520 |a United States. Department of Energy. Office of Science (Contract No. DE-AC02-05CH11231) 
546 |a en_US 
655 7 |a Article 
773 |t The Journal of Physical Chemistry Letters