|
|
|
|
LEADER |
02413 am a22002893u 4500 |
001 |
109256 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Winter, Amos G.
|e author
|
100 |
1 |
0 |
|a MIT-SUTD Collaboration Office
|e contributor
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
|e contributor
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Department of Mechanical Engineering
|e contributor
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Department of Physics
|e contributor
|
100 |
1 |
0 |
|a Winter, Amos G.
|e contributor
|
100 |
1 |
0 |
|a Deits, Robin Lloyd Henderson
|e contributor
|
100 |
1 |
0 |
|a Dorsch, Daniel S.
|e contributor
|
700 |
1 |
0 |
|a Deits, Robin Lloyd Henderson
|e author
|
700 |
1 |
0 |
|a Dorsch, Daniel S.
|e author
|
245 |
0 |
0 |
|a Critical Timescales for Burrowing in Undersea Substrates via Localized Fluidization, Demonstrated by RoboClam: A Robot Inspired by Atlantic Razor Clams
|
260 |
|
|
|b American Society of Mechanical Engineers,
|c 2017-05-22T16:29:46Z.
|
856 |
|
|
|z Get fulltext
|u http://hdl.handle.net/1721.1/109256
|
520 |
|
|
|a The Atlantic razor clam (Ensis directus) burrows into underwater soil by using motions of its shell to locally fluidize the surrounding substrate. The energy associated with movement through fluidized soil - characterized by a depth-independent density and viscosity - scales linearly with depth. In contrast, moving through static soil requires energy that scales with depth squared. For E. directus, this translates to a 10X reduction in the energy required to reach observed burrow depths. For engineers, localized fluidization offers a mechanically simple and purely kinematic method to dramatically reduce burrowing energy. This concept is demonstrated with RoboClam, an E. directus-inspired robot. Using a genetic algorithm to generate digging kinematics, RoboClam has achieved localized fluidization and burrowing performance comparable to that of the animal, with a linear energy-depth relationship. In this paper, we present the critical timescales and associated kinematics necessary for achieving localized fluidization, which are calculated from soil parameters and validated via RoboClam and E. directus testing.
|
520 |
|
|
|a Battelle Memorial Institute
|
520 |
|
|
|a Bluefin Robotics
|
520 |
|
|
|a Chevron Corporation
|
546 |
|
|
|a en_US
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t Volume 6A: 37th Mechanisms and Robotics Conference
|