Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques

Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual...

Full description

Bibliographic Details
Main Authors: Buck, Benjamin R. (Contributor), Formaggio, Joseph A (Contributor), Jaditz, Stephen Hunter (Contributor), Kelsey, James E (Contributor)
Other Authors: Lincoln Laboratory (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: Elsevier, 2017-05-03T19:42:56Z.
Subjects:
Online Access:Get fulltext
LEADER 02115 am a22002533u 4500
001 108648
042 |a dc 
100 1 0 |a Buck, Benjamin R.  |e author 
100 1 0 |a Lincoln Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Buck, Benjamin R.  |e contributor 
100 1 0 |a Formaggio, Joseph A  |e contributor 
100 1 0 |a Jaditz, Stephen Hunter  |e contributor 
100 1 0 |a Kelsey, James E  |e contributor 
700 1 0 |a Formaggio, Joseph A  |e author 
700 1 0 |a Jaditz, Stephen Hunter  |e author 
700 1 0 |a Kelsey, James E  |e author 
245 0 0 |a Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques 
260 |b Elsevier,   |c 2017-05-03T19:42:56Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/108648 
520 |a Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector. 
546 |a en_US 
655 7 |a Article 
773 |t Astroparticle Physics