Predicting students' happiness from physiology, phone, mobility, and behavioral data

In order to model students' happiness, we apply machine learning methods to data collected from undergrad students monitored over the course of one month each. The data collected include physiological signals, location, smartphone logs, and survey responses to behavioral questions. Each day, pa...

Full description

Bibliographic Details
Main Authors: Jaques, Natasha Mary (Contributor), Taylor, Sara Ann (Contributor), Azaria, Asaph Mordehai Assaf (Contributor), Ghandeharioun, Asma (Contributor), Sano, Akane (Contributor), Picard, Rosalind W. (Contributor)
Other Authors: Massachusetts Institute of Technology. Media Laboratory (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers (IEEE), 2017-04-06T20:22:26Z.
Subjects:
Online Access:Get fulltext
LEADER 02489 am a22003613u 4500
001 107917
042 |a dc 
100 1 0 |a Jaques, Natasha Mary  |e author 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Jaques, Natasha Mary  |e contributor 
100 1 0 |a Taylor, Sara Ann  |e contributor 
100 1 0 |a Azaria, Asaph Mordehai Assaf  |e contributor 
100 1 0 |a Ghandeharioun, Asma  |e contributor 
100 1 0 |a Sano, Akane  |e contributor 
100 1 0 |a Picard, Rosalind W.  |e contributor 
700 1 0 |a Taylor, Sara Ann  |e author 
700 1 0 |a Azaria, Asaph Mordehai Assaf  |e author 
700 1 0 |a Ghandeharioun, Asma  |e author 
700 1 0 |a Sano, Akane  |e author 
700 1 0 |a Picard, Rosalind W.  |e author 
245 0 0 |a Predicting students' happiness from physiology, phone, mobility, and behavioral data 
260 |b Institute of Electrical and Electronics Engineers (IEEE),   |c 2017-04-06T20:22:26Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/107917 
520 |a In order to model students' happiness, we apply machine learning methods to data collected from undergrad students monitored over the course of one month each. The data collected include physiological signals, location, smartphone logs, and survey responses to behavioral questions. Each day, participants reported their wellbeing on measures including stress, health, and happiness. Because of the relationship between happiness and depression, modeling happiness may help us to detect individuals who are at risk of depression and guide interventions to help them. We are also interested in how behavioral factors (such as sleep and social activity) affect happiness positively and negatively. A variety of machine learning and feature selection techniques are compared, including Gaussian Mixture Models and ensemble classification. We achieve 70% classification accuracy of self-reported happiness on held-out test data. 
520 |a MIT Media Lab Consortium 
520 |a Robert Wood Johnson Foundation (Wellbeing Initiative) 
520 |a National Institutes of Health (U.S.) (Grant R01GM105018) 
520 |a Samsung (Firm) 
520 |a Natural Sciences and Engineering Research Council of Canada 
546 |a en_US 
655 7 |a Article 
773 |t 2015 International Conference on Affective Computing and Intelligent Interaction (ACII)