|
|
|
|
LEADER |
02489 am a22003613u 4500 |
001 |
107917 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Jaques, Natasha Mary
|e author
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Media Laboratory
|e contributor
|
100 |
1 |
0 |
|a Program in Media Arts and Sciences
|q (Massachusetts Institute of Technology)
|e contributor
|
100 |
1 |
0 |
|a Jaques, Natasha Mary
|e contributor
|
100 |
1 |
0 |
|a Taylor, Sara Ann
|e contributor
|
100 |
1 |
0 |
|a Azaria, Asaph Mordehai Assaf
|e contributor
|
100 |
1 |
0 |
|a Ghandeharioun, Asma
|e contributor
|
100 |
1 |
0 |
|a Sano, Akane
|e contributor
|
100 |
1 |
0 |
|a Picard, Rosalind W.
|e contributor
|
700 |
1 |
0 |
|a Taylor, Sara Ann
|e author
|
700 |
1 |
0 |
|a Azaria, Asaph Mordehai Assaf
|e author
|
700 |
1 |
0 |
|a Ghandeharioun, Asma
|e author
|
700 |
1 |
0 |
|a Sano, Akane
|e author
|
700 |
1 |
0 |
|a Picard, Rosalind W.
|e author
|
245 |
0 |
0 |
|a Predicting students' happiness from physiology, phone, mobility, and behavioral data
|
260 |
|
|
|b Institute of Electrical and Electronics Engineers (IEEE),
|c 2017-04-06T20:22:26Z.
|
856 |
|
|
|z Get fulltext
|u http://hdl.handle.net/1721.1/107917
|
520 |
|
|
|a In order to model students' happiness, we apply machine learning methods to data collected from undergrad students monitored over the course of one month each. The data collected include physiological signals, location, smartphone logs, and survey responses to behavioral questions. Each day, participants reported their wellbeing on measures including stress, health, and happiness. Because of the relationship between happiness and depression, modeling happiness may help us to detect individuals who are at risk of depression and guide interventions to help them. We are also interested in how behavioral factors (such as sleep and social activity) affect happiness positively and negatively. A variety of machine learning and feature selection techniques are compared, including Gaussian Mixture Models and ensemble classification. We achieve 70% classification accuracy of self-reported happiness on held-out test data.
|
520 |
|
|
|a MIT Media Lab Consortium
|
520 |
|
|
|a Robert Wood Johnson Foundation (Wellbeing Initiative)
|
520 |
|
|
|a National Institutes of Health (U.S.) (Grant R01GM105018)
|
520 |
|
|
|a Samsung (Firm)
|
520 |
|
|
|a Natural Sciences and Engineering Research Council of Canada
|
546 |
|
|
|a en_US
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t 2015 International Conference on Affective Computing and Intelligent Interaction (ACII)
|