Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise

We introduce a scheme for the quantum simulation of many-body decoherence based on the unitary evolution of a stochastic Hamiltonian. Modulating the strength of the interactions with stochastic processes, we show that the noise-averaged density matrix simulates an effectively open dynamics governed...

Full description

Bibliographic Details
Main Authors: Beau, M. (Author), del Campo, A. (Author), Chenu, Aurelia (Contributor), Cao, Jianshu (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2017-04-06T18:44:18Z.
Subjects:
Online Access:Get fulltext
LEADER 01683 am a22002653u 4500
001 107906
042 |a dc 
100 1 0 |a Beau, M.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Chenu, Aurelia  |e contributor 
100 1 0 |a Cao, Jianshu  |e contributor 
700 1 0 |a del Campo, A.  |e author 
700 1 0 |a Chenu, Aurelia  |e author 
700 1 0 |a Cao, Jianshu  |e author 
245 0 0 |a Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise 
260 |b American Physical Society,   |c 2017-04-06T18:44:18Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/107906 
520 |a We introduce a scheme for the quantum simulation of many-body decoherence based on the unitary evolution of a stochastic Hamiltonian. Modulating the strength of the interactions with stochastic processes, we show that the noise-averaged density matrix simulates an effectively open dynamics governed by k-body Lindblad operators. Markovian dynamics can be accessed with white-noise fluctuations; non-Markovian dynamics requires colored noise. The time scale governing the fidelity decay under many-body decoherence is shown to scale as N[superscript -2k] with the system size N. Our proposal can be readily implemented in a variety of quantum platforms including optical lattices, superconducting circuits, and trapped ions. 
520 |a University of Massachusetts at Boston (Project P20150000029279) 
520 |a Templeton Foundation 
520 |a Swiss National Science Foundation 
520 |a National Science Foundation (U.S.) (Grant CHE-1112825) 
546 |a en 
655 7 |a Article 
773 |t Physical Review Letters