Two formulas for the BR multiplicity

We prove a projection formula, expressing a relative Buchsbaum-Rim multiplicity in terms of corresponding ones over a module-finite algebra of pure degree, generalizing an old formula for the ordinary (Samuel) multiplicity. Our proof is simple in spirit: after the multiplicities are expressed as sum...

Full description

Bibliographic Details
Main Author: Kleiman, Steven L. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2017-03-30T14:49:58Z.
Subjects:
Online Access:Get fulltext
LEADER 01157 am a22001693u 4500
001 107775
042 |a dc 
100 1 0 |a Kleiman, Steven L.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Kleiman, Steven L.  |e contributor 
245 0 0 |a Two formulas for the BR multiplicity 
260 |b Springer-Verlag,   |c 2017-03-30T14:49:58Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/107775 
520 |a We prove a projection formula, expressing a relative Buchsbaum-Rim multiplicity in terms of corresponding ones over a module-finite algebra of pure degree, generalizing an old formula for the ordinary (Samuel) multiplicity. Our proof is simple in spirit: after the multiplicities are expressed as sums of intersection numbers, the desired formula results from two projection formulas, one for cycles and another for Chern classes. Similarly, but without using any projection formula, we prove an expansion formula, generalizing the additivity formula for the ordinary multiplicity, a case of the associativity formula. 
546 |a en_US 
655 7 |a Article 
773 |t ANNALI DELL'UNIVERSITA' DI FERRARA