|
|
|
|
LEADER |
01748 am a22001933u 4500 |
001 |
107648 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Brodsky, Micah Zev
|e author
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
|e contributor
|
100 |
1 |
0 |
|a Brodsky, Micah Zev
|e contributor
|
245 |
0 |
0 |
|a Partial Redundancy and Morphological Homeostasis: Reliable Development through Overlapping Mechanisms
|
260 |
|
|
|b MIT Press,
|c 2017-03-22T17:54:21Z.
|
856 |
|
|
|z Get fulltext
|u http://hdl.handle.net/1721.1/107648
|
520 |
|
|
|a How might organisms grow into their desired physical forms in spite of environmental and genetic variation? How do they maintain this form in spite of physical insults? This article presents a case study in simulated morphogenesis, using a physics-based model for embryonic epithelial tissue. The challenges of the underlying physics force the introduction of closed-loop controllers for both spatial patterning and geometric structure. Reliable development is achieved not through elaborate control procedures or exact solutions, but through crude layering of independent, overlapping mechanisms. As a consequence, development and regeneration together become one process, morphological homeostasis, which, owing to its internal feedbacks and partially redundant architecture, is remarkably robust to both knockout damage and environmental variation. The incomplete nature of such redundancy furnishes an evolutionary rationale for its preservation, in spite of individual knockout experiments that may suggest it has little purpose.
|
520 |
|
|
|a National Science Foundation (U.S.) (Grant No. CNS-1116294)
|
520 |
|
|
|a Google (Firm)
|
546 |
|
|
|a en_US
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t Artificial Life
|