Loop Optimization for Tensor Network Renormalization

We introduce a tensor renormalization group scheme for coarse graining a two-dimensional tensor network that can be successfully applied to both classical and quantum systems on and off criticality. The key innovation in our scheme is to deform a 2D tensor network into small loops and then optimize...

Full description

Bibliographic Details
Main Authors: Yang, Shuo (Author), Gu, Zheng-Cheng (Author), Wen, Xiao-Gang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2017-03-16T20:43:14Z.
Subjects:
Online Access:Get fulltext
LEADER 01417 am a22002413u 4500
001 107448
042 |a dc 
100 1 0 |a Yang, Shuo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Wen, Xiao-Gang  |e contributor 
700 1 0 |a Gu, Zheng-Cheng  |e author 
700 1 0 |a Wen, Xiao-Gang  |e author 
245 0 0 |a Loop Optimization for Tensor Network Renormalization 
260 |b American Physical Society,   |c 2017-03-16T20:43:14Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/107448 
520 |a We introduce a tensor renormalization group scheme for coarse graining a two-dimensional tensor network that can be successfully applied to both classical and quantum systems on and off criticality. The key innovation in our scheme is to deform a 2D tensor network into small loops and then optimize the tensors on each loop. In this way, we remove short-range entanglement at each iteration step and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. 
520 |a National Natural Science Foundation (China) (11274192) 
520 |a BMO Financial Group 
520 |a Templeton Foundation 
520 |a National Science Foundation (U.S.) (Grants DMR-1506475 and PHY11-25915) 
546 |a en 
655 7 |a Article 
773 |t Physical Review Letters