Interval bounds on the solutions of semi-explicit index-one DAEs. Part 1: analysis

This article presents two methods for computing interval bounds on the solutions of nonlinear, semi-explicit, index-one differential-algebraic equations (DAEs). Part 1 presents theoretical developments, while Part 2 discusses implementation and numerical examples. The primary theoretical contributio...

Full description

Bibliographic Details
Main Authors: Scott, Joseph Kirk (Contributor), Barton, Paul I (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor)
Format: Article
Language:English
Published: Springer Berlin Heidelberg, 2017-02-24T23:37:00Z.
Subjects:
Online Access:Get fulltext
LEADER 01712 am a22002053u 4500
001 107161
042 |a dc 
100 1 0 |a Scott, Joseph Kirk  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Scott, Joseph Kirk  |e contributor 
100 1 0 |a Barton, Paul I  |e contributor 
700 1 0 |a Barton, Paul I  |e author 
245 0 0 |a Interval bounds on the solutions of semi-explicit index-one DAEs. Part 1: analysis 
260 |b Springer Berlin Heidelberg,   |c 2017-02-24T23:37:00Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/107161 
520 |a This article presents two methods for computing interval bounds on the solutions of nonlinear, semi-explicit, index-one differential-algebraic equations (DAEs). Part 1 presents theoretical developments, while Part 2 discusses implementation and numerical examples. The primary theoretical contributions are (1) an interval inclusion test for existence and uniqueness of a solution, and (2) sufficient conditions, in terms of differential inequalities, for two functions to describe componentwise upper and lower bounds on this solution, point-wise in the independent variable. The first proposed method applies these results sequentially in a two-phase algorithm analogous to validated integration methods for ordinary differential equations. The second method unifies these steps to characterize bounds as the solutions of an auxiliary system of DAEs. Efficient implementations of both are described using interval computations and demonstrated on numerical examples. 
520 |a National Science Foundation (U.S.) (grant CBET-0933095) 
546 |a en 
655 7 |a Article 
773 |t Numerische Mathematik