Finite-key analysis for time-energy high-dimensional quantum key distribution

Time-energy high-dimensional quantum key distribution (HD-QKD) leverages the high-dimensional nature of time-energy entangled biphotons and the loss tolerance of single-photon detection to achieve long-distance key distribution with high photon information efficiency. To date, the general-attack sec...

Full description

Bibliographic Details
Main Authors: Furrer, Fabian (Author), Xu, Feihu (Contributor), Shapiro, Jeffrey H (Contributor), Niu, Murphy Yuezhen (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Department of Physics (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2017-01-10T20:03:53Z.
Subjects:
Online Access:Get fulltext
LEADER 02289 am a22002893u 4500
001 106333
042 |a dc 
100 1 0 |a Furrer, Fabian  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Xu, Feihu  |e contributor 
100 1 0 |a Shapiro, Jeffrey H  |e contributor 
100 1 0 |a Niu, Murphy Yuezhen  |e contributor 
700 1 0 |a Xu, Feihu  |e author 
700 1 0 |a Shapiro, Jeffrey H  |e author 
700 1 0 |a Niu, Murphy Yuezhen  |e author 
245 0 0 |a Finite-key analysis for time-energy high-dimensional quantum key distribution 
260 |b American Physical Society,   |c 2017-01-10T20:03:53Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/106333 
520 |a Time-energy high-dimensional quantum key distribution (HD-QKD) leverages the high-dimensional nature of time-energy entangled biphotons and the loss tolerance of single-photon detection to achieve long-distance key distribution with high photon information efficiency. To date, the general-attack security of HD-QKD has only been proven in the asymptotic regime, while HD-QKD's finite-key security has only been established for a limited set of attacks. Here we fill this gap by providing a rigorous HD-QKD security proof for general attacks in the finite-key regime. Our proof relies on an entropic uncertainty relation that we derive for time and conjugate-time measurements that use dispersive optics, and our analysis includes an efficient decoy-state protocol in its parameter estimation. We present numerically evaluated secret-key rates illustrating the feasibility of secure and composable HD-QKD over metropolitan-area distances when the system is subjected to the most powerful eavesdropping attack. 
520 |a United States. Office of Naval Research (Grant N00014- 13-1-0774) 
520 |a United States. Air Force Office of Scientific Research (Grant FA9550-14-1-0052) 
520 |a Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship) 
546 |a en 
655 7 |a Article 
773 |t Physical Review A