Fracton topological order, generalized lattice gauge theory, and duality

We introduce a generalization of conventional lattice gauge theory to describe fracton topological phases, which are characterized by immobile, pointlike topological excitations, and subextensive topological degeneracy. We demonstrate a duality between fracton topological order and interacting spin...

Full description

Bibliographic Details
Main Authors: Vijay, Sagar (Contributor), Haah, Jeongwan (Contributor), Fu, Liang (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Physics (Contributor)
Format: Article
Language:English
Published: American Physical Society, 2017-01-09T19:55:18Z.
Subjects:
Online Access:Get fulltext
LEADER 01493 am a22002413u 4500
001 106302
042 |a dc 
100 1 0 |a Vijay, Sagar  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Physics  |e contributor 
100 1 0 |a Vijay, Sagar  |e contributor 
100 1 0 |a Haah, Jeongwan  |e contributor 
100 1 0 |a Fu, Liang  |e contributor 
700 1 0 |a Haah, Jeongwan  |e author 
700 1 0 |a Fu, Liang  |e author 
245 0 0 |a Fracton topological order, generalized lattice gauge theory, and duality 
260 |b American Physical Society,   |c 2017-01-09T19:55:18Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/106302 
520 |a We introduce a generalization of conventional lattice gauge theory to describe fracton topological phases, which are characterized by immobile, pointlike topological excitations, and subextensive topological degeneracy. We demonstrate a duality between fracton topological order and interacting spin systems with symmetries along extensive, lower-dimensional subsystems, which may be used to systematically search for and characterize fracton topological phases. Commutative algebra and elementary algebraic geometry provide an effective mathematical tool set for our results. Our work paves the way for identifying possible material realizations of fracton topological phases. 
520 |a David & Lucile Packard Foundation 
520 |a MIT Department of Physics Pappalardo Program 
546 |a en 
655 7 |a Article 
773 |t Physical Review B