A Quillen model for classical Morita theory and a tensor categorification of the Brauer group

Let KK be a commutative ring. In this article we construct a well-behaved symmetric monoidal Quillen model structure on the category of small KK-categories which enhances classical Morita theory. Making use of it, we then obtain the usual categorification of the Brauer group and of its functoriality...

Full description

Bibliographic Details
Main Authors: Dell'Ambrogio, Ivo (Author), Trigo Neri Tabuada, Goncalo Jorge (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Elsevier, 2016-11-30T20:33:38Z.
Subjects:
Online Access:Get fulltext
LEADER 01241 am a22002053u 4500
001 105483
042 |a dc 
100 1 0 |a Dell'Ambrogio, Ivo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Trigo Neri Tabuada, Goncalo Jorge  |e contributor 
700 1 0 |a Trigo Neri Tabuada, Goncalo Jorge  |e author 
245 0 0 |a A Quillen model for classical Morita theory and a tensor categorification of the Brauer group 
260 |b Elsevier,   |c 2016-11-30T20:33:38Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/105483 
520 |a Let KK be a commutative ring. In this article we construct a well-behaved symmetric monoidal Quillen model structure on the category of small KK-categories which enhances classical Morita theory. Making use of it, we then obtain the usual categorification of the Brauer group and of its functoriality. Finally, we prove that the (contravariant) corestriction map for finite Galois extensions also lifts to this categorification. 
520 |a Fundação para a Ciência e a Tecnologia (Portugal) (PEst-OE/MAT/UI0297/2011) 
520 |a NEC Corporation (NEC Award 2742738) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of Pure and Applied Algebra