The Smith normal form of a matrix associated with Young's lattice

We prove a conjecture of Miller and Reiner on the Smith normal form of the operator DU associated with a differential poset for the special case of Young's lattice. Equivalently, this operator can be described as [∂ over ∂p1]p1 acting on homogeneous symmetric functions of degree n.

Bibliographic Details
Main Authors: Cai, Tommy Wuxing (Author), Stanley, Richard P (Contributor)
Format: Article
Language:English
Published: American Mathematical Society (AMS), 2016-11-04T18:16:23Z.
Subjects:
Online Access:Get fulltext
LEADER 00908 am a22001813u 4500
001 105203
042 |a dc 
100 1 0 |a Cai, Tommy Wuxing  |e author 
100 1 0 |a Stanley, Richard P  |e contributor 
700 1 0 |a Stanley, Richard P  |e author 
245 0 0 |a The Smith normal form of a matrix associated with Young's lattice 
260 |b American Mathematical Society (AMS),   |c 2016-11-04T18:16:23Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/105203 
520 |a We prove a conjecture of Miller and Reiner on the Smith normal form of the operator DU associated with a differential poset for the special case of Young's lattice. Equivalently, this operator can be described as [∂ over ∂p1]p1 acting on homogeneous symmetric functions of degree n. 
520 |a National Science Foundation (U.S.). (Grant DMS-1068625) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the American Mathematical Society