Temporal Registration in In-Utero Volumetric MRI Time Series

We present a robust method to correct for motion and deformations in in-utero volumetric MRI time series. Spatio-temporal analysis of dynamic MRI requires robust alignment across time in the presence of substantial and unpredictable motion. We make a Markov assumption on the nature of deformations t...

Full description

Bibliographic Details
Main Authors: Grant, P. Ellen (Author), Liao, Ruizhi (Contributor), Abaci Turk, Esra (Contributor), Zhang, Miaomiao (Contributor), Luo, Jie (Contributor), Adalsteinsson, Elfar (Contributor), Golland, Polina (Contributor)
Other Authors: Harvard University- (Contributor), Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: MICCAI Society, 2016-10-28T14:46:15Z.
Subjects:
Online Access:Get fulltext
LEADER 02594 am a22004093u 4500
001 105124
042 |a dc 
100 1 0 |a Grant, P. Ellen  |e author 
100 1 0 |a Harvard University-  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Liao, Ruizhi  |e contributor 
100 1 0 |a Liao, Ruizhi  |e contributor 
100 1 0 |a Abaci Turk, Esra  |e contributor 
100 1 0 |a Zhang, Miaomiao  |e contributor 
100 1 0 |a Luo, Jie  |e contributor 
100 1 0 |a Adalsteinsson, Elfar  |e contributor 
100 1 0 |a Golland, Polina  |e contributor 
700 1 0 |a Liao, Ruizhi  |e author 
700 1 0 |a Abaci Turk, Esra  |e author 
700 1 0 |a Zhang, Miaomiao  |e author 
700 1 0 |a Luo, Jie  |e author 
700 1 0 |a Adalsteinsson, Elfar  |e author 
700 1 0 |a Golland, Polina  |e author 
245 0 0 |a Temporal Registration in In-Utero Volumetric MRI Time Series 
260 |b MICCAI Society,   |c 2016-10-28T14:46:15Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/105124 
520 |a We present a robust method to correct for motion and deformations in in-utero volumetric MRI time series. Spatio-temporal analysis of dynamic MRI requires robust alignment across time in the presence of substantial and unpredictable motion. We make a Markov assumption on the nature of deformations to take advantage of the temporal structure in the image data. Forward message passing in the corresponding hidden Markov model (HMM) yields an estimation algorithm that only has to account for relatively small motion between consecutive frames. We demonstrate the utility of the temporal model by showing that its use improves the accuracy of the segmentation propagation through temporal registration. Our results suggest that the proposed model captures accurately the temporal dynamics of deformations in in-utero MRI time series. 
520 |a National Institutes of Health (U.S.) (NIH NIBIB NAC P41EB015902) 
520 |a National Institutes of Health (U.S.) (NIH NICHD U01HD087211) 
520 |a National Institutes of Health (U.S.) (NIH NIBIB R01EB017337) 
520 |a Wistron Corporation 
520 |a Merrill Lynch Wealth Management (Fellowship) 
546 |a en_US 
655 7 |a Article 
773 |t 19th International Conference on Medical Image Computing & Computer Assisted Intervention, MICCAI'16