Large N Duality, Lagrangian Cycles, and Algebraic Knots

We consider knot invariants in the context of large N transitions of topological strings. In particular we consider aspects of Lagrangian cycles associated to knots in the conifold geometry. We show how these can be explicitly constructed in the case of algebraic knots. We use this explicit construc...

Full description

Bibliographic Details
Main Authors: Diaconescu, D.-E (Author), Vafa, C. (Author), Shende, Vivek (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2016-10-24T18:07:17Z.
Subjects:
Online Access:Get fulltext
LEADER 01314 am a22002173u 4500
001 104947
042 |a dc 
100 1 0 |a Diaconescu, D.-E.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Shende, Vivek  |e contributor 
700 1 0 |a Vafa, C.  |e author 
700 1 0 |a Shende, Vivek  |e author 
245 0 0 |a Large N Duality, Lagrangian Cycles, and Algebraic Knots 
260 |b Springer-Verlag,   |c 2016-10-24T18:07:17Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/104947 
520 |a We consider knot invariants in the context of large N transitions of topological strings. In particular we consider aspects of Lagrangian cycles associated to knots in the conifold geometry. We show how these can be explicitly constructed in the case of algebraic knots. We use this explicit construction to explain a recent conjecture relating study of stable pairs on algebraic curves with HOMFLY polynomials. Furthermore, for torus knots, using the explicit construction of the Lagrangian cycle, we also give a direct A-model computation and recover the HOMFLY polynomial for this case. 
520 |a Engineering and Physical Sciences Research Council 
520 |a Simons Foundation 
546 |a en 
655 7 |a Article 
773 |t Communications in Mathematical Physics