Computing Néron-Severi groups and cycle class groups

Assuming the Tate conjecture and the computability of étale cohomology with finite coefficients, we give an algorithm that computes the Néron-Severi group of any smooth projective geometrically integral variety, and also the rank of the group of numerical equivalence classes of codimension p cycle...

Full description

Bibliographic Details
Main Authors: Poonen, Bjorn (Contributor), Testa, Damiano (Author), van Luijk, Ronald (Author)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Cambridge University Press, 2016-09-22T22:29:56Z.
Subjects:
Online Access:Get fulltext
LEADER 01088 am a22002173u 4500
001 104378
042 |a dc 
100 1 0 |a Poonen, Bjorn  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Poonen, Bjorn  |e contributor 
700 1 0 |a Testa, Damiano  |e author 
700 1 0 |a van Luijk, Ronald  |e author 
245 0 0 |a Computing Néron-Severi groups and cycle class groups 
260 |b Cambridge University Press,   |c 2016-09-22T22:29:56Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/104378 
520 |a Assuming the Tate conjecture and the computability of étale cohomology with finite coefficients, we give an algorithm that computes the Néron-Severi group of any smooth projective geometrically integral variety, and also the rank of the group of numerical equivalence classes of codimension p cycles for any p. 
520 |a John Simon Guggenheim Memorial Foundation 
520 |a National Science Foundation (U.S.) (Grants DMS-0841321 and DMS-1069236) 
546 |a en_US 
655 7 |a Article 
773 |t Compositio Mathematica