Heazlewoodite, Ni[subscript 3]S[subscript 2]: A Potent Catalyst for Oxygen Reduction to Water under Benign Conditions

Electrodeposited thin films and nanoparticles of Ni[subscript 3]S[subscript 2] are highly active, poison- and corrosion-resistant catalysts for oxygen reduction to water at neutral pH. In pH 7 phosphate buffer, Ni[subscript 3]S[subscript 2] displays catalytic onset at 0.8 V versus the reversible hyd...

Full description

Bibliographic Details
Main Authors: Falkowski, Joseph (Contributor), Concannon, Nolan M. (Contributor), Yan, Bing (Contributor), Surendranath, Yogesh (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Chemistry (Contributor)
Format: Article
Language:English
Published: American Chemical Society (ACS), 2016-08-16T14:21:52Z.
Subjects:
Online Access:Get fulltext
LEADER 02074 am a22003013u 4500
001 103926
042 |a dc 
100 1 0 |a Falkowski, Joseph  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Surendranath, Yogesh  |e contributor 
100 1 0 |a Falkowski, Joseph  |e contributor 
100 1 0 |a Concannon, Nolan M.  |e contributor 
100 1 0 |a Yan, Bing  |e contributor 
100 1 0 |a Surendranath, Yogesh  |e contributor 
700 1 0 |a Concannon, Nolan M.  |e author 
700 1 0 |a Yan, Bing  |e author 
700 1 0 |a Surendranath, Yogesh  |e author 
245 0 0 |a Heazlewoodite, Ni[subscript 3]S[subscript 2]: A Potent Catalyst for Oxygen Reduction to Water under Benign Conditions 
246 3 3 |a Heazlewoodite, Ni3S2: A Potent Catalyst for Oxygen Reduction to Water under Benign Conditions 
260 |b American Chemical Society (ACS),   |c 2016-08-16T14:21:52Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/103926 
520 |a Electrodeposited thin films and nanoparticles of Ni[subscript 3]S[subscript 2] are highly active, poison- and corrosion-resistant catalysts for oxygen reduction to water at neutral pH. In pH 7 phosphate buffer, Ni[subscript 3]S[subscript 2] displays catalytic onset at 0.8 V versus the reversible hydrogen electrode, a Tafel slope of 109 mV decade[superscript -1], and high faradaic efficiency for four-electron reduction of O[subscript 2] to water. Under these conditions, the activity and stability of Ni[subscript 3]S[subscript 2] exceeds that of polycrystalline platinum and manganese, nickel, and cobalt oxides, illustrating the catalytic potential of pairing labile first-row transition metal active sites with a more covalent sulfide host lattice. 
520 |a National Science Foundation (U.S.) (MIT MRSEC Program, award number DMR-0819762) 
520 |a Massachusetts Institute of Technology. Department of Chemistry (Junior Faculty Funds) 
520 |a MIT Energy Initiative (NSF award CHE-1454060) 
546 |a en_US 
655 7 |a Article 
773 |t Journal of the American Chemical Society