|
|
|
|
LEADER |
01773 am a22002653u 4500 |
001 |
103882 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Yano, Masayuki
|e author
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Department of Mechanical Engineering
|e contributor
|
100 |
1 |
0 |
|a Yano, Masayuki
|e contributor
|
100 |
1 |
0 |
|a Penn, James Douglass
|e contributor
|
100 |
1 |
0 |
|a Patera, Anthony T.
|e contributor
|
700 |
1 |
0 |
|a Penn, James Douglass
|e author
|
700 |
1 |
0 |
|a Patera, Anthony T.
|e author
|
245 |
0 |
0 |
|a A model-data weak formulation for simultaneous estimation of state and model bias
|
246 |
3 |
3 |
|a A model-data weak formulation for simultaneous estimation of state and model bias Estimation de la variable dʼétat et du biais de modèle par une formulation faible incorporant les données
|
260 |
|
|
|b Elsevier,
|c 2016-08-10T17:30:56Z.
|
856 |
|
|
|z Get fulltext
|u http://hdl.handle.net/1721.1/103882
|
520 |
|
|
|a We introduce a Petrov-Galerkin regularized saddle approximation which incorporates a "model" (partial differential equation) and "data" (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contributions to the reduction in the error in state as a function of the number of observations, M: the stability constant increases with M; the model-bias best-fit error decreases with M. We present results for a synthetic Helmholtz problem and an actual acoustics system.
|
520 |
|
|
|a United States. Air Force Office of Scientific Research (OSD/AFOSR/MURI Grant FA9550-09-1-0613)
|
520 |
|
|
|a United States. Office of Naval Research (ONR Grant N00014-11-0713)
|
520 |
|
|
|a SUTD-MIT International Design Centre (IDC)
|
546 |
|
|
|a en_US
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t Comptes Rendus Mathematique
|