A model-data weak formulation for simultaneous estimation of state and model bias

We introduce a Petrov-Galerkin regularized saddle approximation which incorporates a "model" (partial differential equation) and "data" (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contr...

Full description

Bibliographic Details
Main Authors: Yano, Masayuki (Contributor), Penn, James Douglass (Contributor), Patera, Anthony T. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor)
Format: Article
Language:English
Published: Elsevier, 2016-08-10T17:30:56Z.
Subjects:
Online Access:Get fulltext
LEADER 01773 am a22002653u 4500
001 103882
042 |a dc 
100 1 0 |a Yano, Masayuki  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Yano, Masayuki  |e contributor 
100 1 0 |a Penn, James Douglass  |e contributor 
100 1 0 |a Patera, Anthony T.  |e contributor 
700 1 0 |a Penn, James Douglass  |e author 
700 1 0 |a Patera, Anthony T.  |e author 
245 0 0 |a A model-data weak formulation for simultaneous estimation of state and model bias 
246 3 3 |a A model-data weak formulation for simultaneous estimation of state and model bias Estimation de la variable dʼétat et du biais de modèle par une formulation faible incorporant les données 
260 |b Elsevier,   |c 2016-08-10T17:30:56Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/103882 
520 |a We introduce a Petrov-Galerkin regularized saddle approximation which incorporates a "model" (partial differential equation) and "data" (M experimental observations) to yield estimates for both state and model bias. We provide an a priori theory that identifies two distinct contributions to the reduction in the error in state as a function of the number of observations, M: the stability constant increases with M; the model-bias best-fit error decreases with M. We present results for a synthetic Helmholtz problem and an actual acoustics system. 
520 |a United States. Air Force Office of Scientific Research (OSD/AFOSR/MURI Grant FA9550-09-1-0613) 
520 |a United States. Office of Naval Research (ONR Grant N00014-11-0713) 
520 |a SUTD-MIT International Design Centre (IDC) 
546 |a en_US 
655 7 |a Article 
773 |t Comptes Rendus Mathematique