Helicoid-like minimal disks and uniqueness

We show that for an embedded minimal disk in R[superscript 3], near points of large curvature the surface is bi-Lipschitz with a piece of a helicoid. Additionally, a simplified proof of the uniqueness of the helicoid is provided.

Bibliographic Details
Main Authors: Bernstein, Jacob (Author), Breiner, Christine Elaine (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Walter de Gruyter, 2016-06-24T15:15:50Z.
Subjects:
Online Access:Get fulltext
LEADER 00864 am a22001813u 4500
001 103320
042 |a dc 
100 1 0 |a Bernstein, Jacob  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Breiner, Christine Elaine  |e contributor 
700 1 0 |a Breiner, Christine Elaine  |e author 
245 0 0 |a Helicoid-like minimal disks and uniqueness 
260 |b Walter de Gruyter,   |c 2016-06-24T15:15:50Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/103320 
520 |a We show that for an embedded minimal disk in R[superscript 3], near points of large curvature the surface is bi-Lipschitz with a piece of a helicoid. Additionally, a simplified proof of the uniqueness of the helicoid is provided. 
546 |a en_US 
655 7 |a Article 
773 |t Journal für die reine und angewandte Mathematik (Crelles Journal)