|
|
|
|
LEADER |
01169 am a22002173u 4500 |
001 |
103176 |
042 |
|
|
|a dc
|
100 |
1 |
0 |
|a Dotti, Edoardo
|e author
|
100 |
1 |
0 |
|a Massachusetts Institute of Technology. Department of Mathematics
|e contributor
|
100 |
1 |
0 |
|a Micheli, Giacomo
|e contributor
|
700 |
1 |
0 |
|a Micheli, Giacomo
|e author
|
245 |
0 |
0 |
|a Eisenstein polynomials over function fields
|
260 |
|
|
|b Springer-Verlag,
|c 2016-06-21T20:00:36Z.
|
856 |
|
|
|z Get fulltext
|u http://hdl.handle.net/1721.1/103176
|
520 |
|
|
|a In this paper we compute the density of monic and non-monic Eisenstein polynomials of fixed degree having entries in an integrally closed subring of a function field over a finite field. This gives a function field analogue of results by Dubickas (Appl Algebra Eng Commun Comput 14(2):127-132, 2003) and by Heyman and Shparlinski (Appl Algebra Eng Commun Comput 24(2):149-156, 2013).
|
520 |
|
|
|a Swiss National Science Foundation (Grant Number 149716)
|
520 |
|
|
|a Swiss National Science Foundation (Grant Number 161757)
|
520 |
|
|
|a Armasuisse (Agency)
|
546 |
|
|
|a en
|
655 |
7 |
|
|a Article
|
773 |
|
|
|t Applicable Algebra in Engineering, Communication and Computing
|