Eisenstein polynomials over function fields

In this paper we compute the density of monic and non-monic Eisenstein polynomials of fixed degree having entries in an integrally closed subring of a function field over a finite field. This gives a function field analogue of results by Dubickas (Appl Algebra Eng Commun Comput 14(2):127-132, 2003)...

Full description

Bibliographic Details
Main Authors: Dotti, Edoardo (Author), Micheli, Giacomo (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer-Verlag, 2016-06-21T20:00:36Z.
Subjects:
Online Access:Get fulltext
LEADER 01169 am a22002173u 4500
001 103176
042 |a dc 
100 1 0 |a Dotti, Edoardo  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Micheli, Giacomo  |e contributor 
700 1 0 |a Micheli, Giacomo  |e author 
245 0 0 |a Eisenstein polynomials over function fields 
260 |b Springer-Verlag,   |c 2016-06-21T20:00:36Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/103176 
520 |a In this paper we compute the density of monic and non-monic Eisenstein polynomials of fixed degree having entries in an integrally closed subring of a function field over a finite field. This gives a function field analogue of results by Dubickas (Appl Algebra Eng Commun Comput 14(2):127-132, 2003) and by Heyman and Shparlinski (Appl Algebra Eng Commun Comput 24(2):149-156, 2013). 
520 |a Swiss National Science Foundation (Grant Number 149716) 
520 |a Swiss National Science Foundation (Grant Number 161757) 
520 |a Armasuisse (Agency) 
546 |a en 
655 7 |a Article 
773 |t Applicable Algebra in Engineering, Communication and Computing