Laurent phenomenon sequences

In this paper, we undertake a systematic study of sequences generated by recurrences x[subscript m+n]x[subscript m]=P(x[subscript m+1],...,x[subscript m+n−1])xm+nxm=P(xm+1,...,xm+n−1) which exhibit the Laurent phenomenon. Some of the most famous among these are the Somos and the Gale-Robinson sequen...

Full description

Bibliographic Details
Main Authors: Alman, Joshua (Contributor), Cuenca, Cesar (Author), Huang, Jiaoyang (Contributor), Cuenca, Cesar A. (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Mathematics (Contributor)
Format: Article
Language:English
Published: Springer US, 2016-06-17T17:20:38Z.
Subjects:
Online Access:Get fulltext
LEADER 01621 am a22002413u 4500
001 103143
042 |a dc 
100 1 0 |a Alman, Joshua  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Mathematics  |e contributor 
100 1 0 |a Alman, Joshua  |e contributor 
100 1 0 |a Cuenca, Cesar A.  |e contributor 
100 1 0 |a Huang, Jiaoyang  |e contributor 
700 1 0 |a Cuenca, Cesar  |e author 
700 1 0 |a Huang, Jiaoyang  |e author 
700 1 0 |a Cuenca, Cesar A.  |e author 
245 0 0 |a Laurent phenomenon sequences 
260 |b Springer US,   |c 2016-06-17T17:20:38Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/103143 
520 |a In this paper, we undertake a systematic study of sequences generated by recurrences x[subscript m+n]x[subscript m]=P(x[subscript m+1],...,x[subscript m+n−1])xm+nxm=P(xm+1,...,xm+n−1) which exhibit the Laurent phenomenon. Some of the most famous among these are the Somos and the Gale-Robinson sequences. Our approach is based on finding period 1 seeds of Laurent phenomenon algebras of Lam-Pylyavskyy. We completely classify polynomials P that generate period 1 seeds in the cases of n=2,3 and of mutual binomial seeds. We also find several other interesting families of polynomials P whose generated sequences exhibit the Laurent phenomenon. Our classification for binomial seeds is a direct generalization of a result by Fordy and Marsh, that employs a new combinatorial gadget we call a double quiver. 
520 |a National Science Foundation (U.S.) (grants DMS-1067183 and DMS-1148634) 
546 |a en 
655 7 |a Article 
773 |t Journal of Algebraic Combinatorics